
Synthetic Infrared Scene
Improving the KARMA IRSG module and signature modelling tool
SMAT

Marc-André Labrie
Eric Rouleau
Jonathan Richard
Mathieu Desmeules
Alexandre Bastien
Louis Tanguay Informatique inc.

Geoffroy Rivet-Sabourin
Technologie Intelligence Image inc.

Prepared By:

Louis Tanguay Informatique inc.
825 Boulevard Lebourgneuf, Bureau 204
Québec, Canada G2J 0B9

Contractor's Document Number: LTI-SIS-2011-1
Contract Project Manager: Marc-André Labrie
PWGSC Contract Number: W7701-082234/001/QCL
CSA: Jean-Francois Lepage, Defence Scientist, 418-844-4000 Ext.: 4192

Defence R&D Canada – Valcartier
Contract Report

DRDC Valcartier CR 2011-167
March 2011

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the
contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Synthetic Infrared Scene
Improving the KARMA IRSG module and signature modelling tool
SMAT

Marc-André Labrie
Eric Rouleau
Jonathan Richard
Mathieu Desmeules
Alexandre Bastien
Louis Tanguay Informatique inc.

Geoffroy Rivet-Sabourin
Technologie Intelligence Image inc.

Prepared By:

Louis Tanguay Informatique inc.
825 Boulevard Lebourgneuf, Bureau 204
Québec, Canada G2J 0B9

Contractor's Document Number: LTI-SIS-2011-1
Contract Project Manager: Marc-André Labrie
PWGSC Contract Number: W7701-082234/001/QCL
CSA: Jean-Francois Lepage, Defence Scientist, 418-844-4000 4192

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the
contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada – Valcartier
Contract Report

DRDC Valcartier CR 2011-167

March 2011

Principal Author

Original signed by Marc-André Labrie

Marc-André Labrie

Project Manager

Approved by

Original signed by Jean-Francois Lepage

Jean-Francois Lepage

Contract Scientific Authority

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2011

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2011

DRDC Valcartier CR 2011-167 i

Abstract……..

The main objective of the contract “Synthetic Infrared Scene” (W7701-082234) was to increase
the level of fidelity of infrared guided weapon engagement simulations inside the KARMA
simulation environment. The work was carried out from November 2008 to March 2011. This
contract report focuses on presenting the new functionalities that were added to the infrared scene
generator (IRSG) module which is part of the KARMA framework. Modifications were also done
to the signature modelling and analysis tool (SMAT) which uses the IRSG to perform various
kind of analysis.

Résumé….....

L'objectif principal du contrat "Scène Infrarouge Synthétique" (W7701-082234) a été
d'augmenter le niveau de fidélité d’engagements impliquant des autodirecteurs infrarouges dans
l'environnement de simulation KARMA. Le travail a été réalisé à partir de novembre 2008
jusqu’à mars 2011. Ce rapport de contrat est axé sur la présentation des nouvelles fonctionnalités
qui ont été ajoutées au module de génération de scène infrarouge (IRSG) faisant partie de
l’environnement KARMA. Des modifications ont également été apportées à l’outil de
modélisation et d'analyse de signature infrarouge (SMAT) qui utilise l’IRSG pour effectuer
différents types d'analyse.

ii DRDC Valcartier CR 2011-167

This page intentionally left blank.

DRDC Valcartier CR 2011-167 iii

Executive summary

Synthetic Infrared Scene: Improving the KARMA IRSG module
and signature modelling tool SMAT

M.-A. Labrie; E. Rouleau; J. Richard; M. Desmeules; A. Bastien; G. Rivet-
Sabourin; DRDC Valcartier CR 2011-167; Defence R&D Canada – Valcartier;
March 2011

The main objective of the contract “Synthetic Infrared Scene” (W7701-082234) was to increase
the level of fidelity of infrared guided weapon engagement simulations inside the KARMA
simulation environment. The work was carried out from November 2008 to March 2011. This
contract report focuses on the new functionalities that were added to the infrared scene generator
(IRSG) module which is part of the KARMA framework. Modifications were also done to the
signature modelling and analysis tool (SMAT) which uses the IRSG to perform various kind of
analysis.

The main improvements to the IRSG module include: the use of advanced rendering libraries and
mechanisms to exploit graphical processor units, better atmospheric modelling including the use
of a wideband correlated-k mode for increased performances, better representation of
backgrounds, better representation of surface reflections, implementation of a zoom antialiasing
algorithm, and representation of scattering effects. The SMAT tool was improved to take account
of the new IRSG features and to add new modelling abilities.

These improvements should reflect in the ability to build better signature models and ultimately
in an increased fidelity of the generated scene for a wider range of conditions (including
atmospheric conditions, engagement geometry, etc.). This will contribute to a significant increase
of fidelity of the results obtained within the KARMA framework.

The work done within this contract was aimed at fully digital simulation, so increasing
performances was not driving the development. Eventually, some aspects, such as the zoom
antialiasing algorithm, may need to be optimized to increase the frame rate.

iv DRDC Valcartier CR 2011-167

Sommaire

Synthetic Infrared Scene: Improving the KARMA IRSG module
and signature modelling tool SMAT

M.-A. Labrie; E. Rouleau; J. Richard; M. Desmeules; A. Bastien; G. Rivet-
Sabourin; DRDC Valcartier CR 2011-167;R & D pour la défense Canada –
Valcartier; Mars2011.

L'objectif principal du contrat "Scène Infrarouge Synthétique" (W7701-082234) a été
d'augmenter le niveau de fidélité d’engagements impliquant des autodirecteurs infrarouges dans
l'environnement de simulation KARMA. Le travail a été réalisé à partir de novembre 2008
jusqu’à mars 2011. Ce rapport de contrat est axé sur la présentation des nouvelles fonctionnalités
qui ont été ajoutées au module de génération de scène infrarouge (IRSG) faisant partie de
l’environnement KARMA. Des modifications ont également été apportées à l’outil de
modélisation et d’analyse de signature infrarouge (SMAT) qui utilise l’IRSG pour effectuer
différents types d'analyse.

Les principales améliorations apportées au module IRSG comprennent: l'utilisation de
bibliothèques de rendu avancé et des mécanismes permettant d'exploiter les processeurs de rendu
graphique, une meilleure modélisation de l'atmosphère incluant l'utilisation d'un mode à large
bande basé sur les k-corrélés pour des performances accrues, une meilleure représentation des
arrière-plans, une meilleure représentation des réflexions sur les surfaces, la mise en œuvre d'un
algorithme d’anticrénelage (zoom antialiasing), et la représentation des effets de diffusion. L'outil
SMAT a été amélioré afin de tenir compte des nouvelles caractéristiques de l’IRSG et d'ajouter de
nouvelles capacités de modélisation.

Ces améliorations devraient se refléter dans la capacité de construire des signatures de modèles de
meilleure qualité et, en fin de compte, en une fidélité accrue de la scène générée pour un plus
large éventail de conditions (y compris les conditions atmosphériques, la géométrie de
l’engagement, etc.) Cela contribuera à une augmentation significative de la fidélité des résultats
obtenus avec KARMA.

Le travail effectué durant ce contrat visait à améliorer les simulations entièrement numériques :
l’aspect consistant à améliorer les performances n'était pas ce qui a dirigé les efforts.
Éventuellement, certains aspects pourraient être optimisés pour augmenter la fréquence des
images générés, tels que l'algorithme d’anticrénelage développé.

DRDC Valcartier CR 2011-167 v

Table of contents

Abstract…….. .. i

Résumé…..... .. i

Executive summary .. iii

Sommaire iv

Table of contents ... v

List of figures ... viii

List of tables ... xi

1 Introduction ... 1

2 Scene generation refactoring .. 2
2.1 IRSG .. 2
2.2 Adapting for KARMA ... 2
2.3 Adapting for SMAT .. 3

2.3.1 GUI uncoupling ... 4

3 Advanced rendering techniques .. 6
3.1 Migrating from OSG 2.2.x to OSG 2.8.0 .. 6
3.2 Migrating from Mesa to OpenGL .. 7
3.3 Framebuffer object .. 8

3.3.1 Context conflict ... 9
3.4 KARMA architecture .. 10

4 Apparent radiance and reflections .. 11
4.1 Reflections in KARMA simulations .. 15
4.2 Reflections in SMAT ... 16

5 Atmospheric module ... 18
5.1 Environment refactoring .. 18
5.2 An atmospheric model based on SMART ... 19

5.2.1 Initialisation review ... 22
5.2.2 Calculation mode selection ... 22

6 Antialiasing ... 24
6.1 Zoom antialiasing technique .. 24

6.1.1 Method description ... 24
6.1.2 Zoom antialiasing activation ... 31
6.1.3 Troubleshooting .. 31
6.1.4 Results ... 32

6.1.4.1 Performance .. 32
6.1.4.2 Accuracy ... 33
6.1.4.3 Discussion ... 35

vi DRDC Valcartier CR 2011-167

6.2 OSG rendering library ... 36
6.2.1 Zoom antialiasing capacity ... 37
6.2.2 Multi-pass rendering ... 38

6.2.2.1 Pass aggregator ... 39
6.2.3 Utilities .. 39
6.2.4 Object’s size based level-of-detail .. 40

7 Background ... 41
7.1 Multiples background values ... 41

7.1.1 Background geometry ... 42
7.1.2 Using SMART to obtain background values .. 44

7.2 Sky and terrain textures ... 45
7.2.1 Skybox .. 45
7.2.2 Terrain geometry ... 46
7.2.3 Skybox and terrain in IRSG .. 46

7.3 Solar disc in IRSG ... 48
7.4 Rendering .. 49

7.4.1 Pre-render camera ... 49
7.5 KARMA architecture .. 50

8 Database properties ... 52
8.1 User defined spectrum ... 52

8.1.1 User defined spectrum file format ... 54
8.1.2 Temperature properties ... 54

8.2 Temperature lookup tables .. 57
8.3 N angle factor .. 57

9 Scattering .. 59
9.1 MTF database .. 59
9.2 Using MTF for scattering .. 61
9.3 Results ... 65

10 SMAT controls ... 67
10.1 Coordinate system ... 67
10.2 Sun vector .. 67
10.3 Model-View manipulator .. 67
10.4 Temperature profile ... 68
10.5 Images comparison .. 68
10.6 Polar plot ... 69

10.6.1 Camera-Azimuth mode ... 70
10.6.2 Camera-Elevation mode .. 70
10.6.3 Model-Yaw mode ... 70

10.7 Radiative outputs ... 70

11 Using OSG formats within the IRSG.. 72

DRDC Valcartier CR 2011-167 vii

11.1 Using the OSG UserData field .. 72
11.2 Required modifications ... 72
11.3 Converting a model (FLT to OSG).. 73

12 Scaling parameters .. 74

13 Evaluating Performance Validator tool .. 77
13.1 Evaluating Performance Validator overhead ... 77
13.2 Test 1: Evaluating method without child calls .. 78
13.3 Test 2: Evaluating a method with repeated child calls .. 78
13.4 Test 3: Evaluating a method with numerous child calls .. 79
13.5 Discussion ... 80

14 Conclusion .. 81

References..... .. 82

Annex A .. AtmosphereSmart XML parameters file example. .. 83

List of symbols/abbreviations/acronyms/initialisms ... 88

viii DRDC Valcartier CR 2011-167

List of figures

Figure 1: Architecture of the IRSG adapted for KARMA. ... 3

Figure 2: Architecture of the IRSG adapted for SMAT. ... 4

Figure 3: Architecture of the IRSG related to the HDR hardware rendering. 10

Figure 4: Different reflections added on a 3D model. ... 11

Figure 5: An example showing images obtained without (left) and with (right) reflections. 15

Figure 6: Defining the sun parameters inside SMAT. ... 16

Figure 7: Parameters causing reflections in SMAT. .. 17

Figure 8: The relation between Environment and Atmosphere. .. 18

Figure 9: Model class diagram for the KARMA AtmosphereSmart atmospheric model. 20

Figure 10: Setting the SMART configuration file inside SMAT. ... 21

Figure 11: Setting the execution mode (wideband-ck/spectral) in SMAT during an analysis. 23

Figure 12: Zoom camera view based on bounding sphere (solid line) compared to view based
on exact model extends (dashed). ... 25

Figure 13: An example showing frustra for the main scene's camera and a zoom camera. 26

Figure 14: General downsampling process (2x and 4x). ... 26

Figure 15: Multi-pass downsampling with shaders. .. 27

Figure 16: Downsampling process via OSG. .. 27

Figure 17: Switching between the 3D model and a quad during ZAA process. 29

Figure 18: An overview of the ZAA process. ... 30

Figure 19: Zoom antialiasing activation within SMAT. .. 31

Figure 20: Parameters used for the ZAA performance analysis. ... 32

Figure 21: Time (ms) required to produce one image for the available antialiasing algorithms
and when the platform (CC130) is located at various ranges (m). 33

Figure 22: Contrast intensity vs. range for various antialiasing modes. .. 34

Figure 23: Contrast intensity vs. range for ZAA modes only. ... 34

Figure 24: Parameters used for the ZAA accuracy analysis. ... 35

Figure 25: The packages defined in the OsgRendering library. .. 36

Figure 26: OsgRendering class diagram. ... 37

Figure 27: Zoom antialiasing capacity as a strategy pattern. ... 38

Figure 28: Generic multi-pass view... 38

Figure 29: Camera’s frustum representation. .. 39

DRDC Valcartier CR 2011-167 ix

Figure 30: Bounding box (left) and bounding sphere (right) representation of a 3D model. 40

Figure 31: Single background value (from 1 LOS) vs. multiple values (from 4 LOS). 41

Figure 32: GL_QUADS vs. GL_QUAD_STRIP. ... 42

Figure 33: Interpolation within the QUAD_STRIP. ... 42

Figure 34: Using the non-uniform background in SMAT. .. 44

Figure 35: Using SMART to calculate background radiance in SMAT.. 45

Figure 36: An example of skybox. .. 45

Figure 37: An example of terrain geometry. ... 46

Figure 38: Using a skybox and terrain to model the background in SMAT. 47

Figure 39: Activating the solar disc in SMAT. ... 48

Figure 40: Processing of the final background image. .. 50

Figure 41: Non-uniform background class diagram. ... 51

Figure 42: User defined spectrum import tab. ... 53

Figure 43 : Spectrum reference distance. .. 54

Figure 44: Temperature tab with use temperature mode. .. 55

Figure 45: Temperature tab with user defined spectrum mode. .. 56

Figure 46: Material tab with the N angle factor. ... 58

Figure 47: Modulation factor computed according to the view angle and for different N angle
factors. ... 58

Figure 48: Image degraded by the atmosphere. ... 59

Figure 49: Reproduction of Figure 5 from [11]. “Comparison of MTF simulated with the
Undique Monte Carlo simulator and the stratified model for water droplets 100
microns in diameter and 8 different optical depths. The gray lines show the
stratified model results and the black superimposed lines show the Monte Carlo
results” – the grey lines deviate from the dotted curves (Monte Carlo simulator) at
high spatial frequencies since the optical system is included in the later. 60

Figure 50: Different quads involved in different techniques. .. 62

Figure 51: General process to apply MTF on the texture. ... 62

Figure 52: Flow chart of ApplyMTF function. .. 63

Figure 53: Method to create 2D MTF. .. 64

Figure 54: Example of 2D MTF. ... 64

Figure 55: Image of the sphere model without (left) and with (right) scattering effect. 66

Figure 56: Activating the scattering in SMAT. ... 66

Figure 57: Model view inside SMAT. ... 67

Figure 58: Camera and model manipulators inside SMAT. .. 68

x DRDC Valcartier CR 2011-167

Figure 59: Setup and view a temperature profile. ... 68

Figure 60: Comparing images with SMAT. .. 69

Figure 61: Polar plot analysis with SMAT. ... 69

Figure 62: Radiative outputs generator inside SMAT. .. 70

Figure 63: Sun irradiance spectrum obtained from SMART. .. 71

Figure 64: Setting the scales activation inside SMAT. ... 76

Figure 65: Performance Validator timing mechanisms. .. 77

DRDC Valcartier CR 2011-167 xi

List of tables

Table 1: Mapping between deprecated and updated methods of OSG 2.8.0. 6

Table 2: Pros and cons of using Mesa 3D. .. 7

Table 3: Pros and cons of using OpenGL ICD. ... 8

Table 4: Definition of an off-screen floating-point texture in OSG. ... 9

Table 5: Render to texture using FBO in OSG. ... 9

Table 6: Code to avoid conflicts between the SMAT/IRSG OpenGL contexts. 9

Table 7: Vertex shader used in the IRSG. ... 12

Table 8: Fragment shader used in the IRSG. ... 13

Table 9: KARMA’s environment parameters related to the sun. .. 15

Table 10: An example of Accept() method for an atmospheric model. .. 19

Table 11: Adding an atmospheric module in the Environment’s composition. 21

Table 12: Vertex shader for the background geometry. .. 43

Table 13: Fragment shader for the background geometry. .. 43

Table 14: Fragment shader for the skybox and terrain. ... 46

Table 15: Fragment shader for the sun. ... 48

Table 16: Using two pre-render cameras before the main camera. ... 49

Table 17: Blending function when rendering the background geometry. 50

Table 18: User defined spectrum file format example. ... 54

Table 19: Time dependence lookup table file format example. .. 57

Table 20: Angle dependence lookup table file format example. ... 57

Table 21: Description of the MTF binary format. ... 60

Table 22: Apply MTF function. .. 64

Table 23: An example of batch file used to convert a 3D model from FLT to IVE. 73

Table 24: An example defining a scale parameter inside an XML file. .. 75

Table 25: Code for the evaluation of a method call. ... 78

Table 26: Evaluation of a portion of code results. ... 78

Table 27: Code for the evaluation of a method call with 10,000 child calls. 79

Table 28: Repeated method calls results. .. 79

Table 29: Code for the evaluation of a method call with 1,000,000 child calls. 80

Table 30: Numerous method calls results. ... 80

xii DRDC Valcartier CR 2011-167

This page intentionally left blank.

DRDC Valcartier CR 2011-167 1

1 Introduction

The main objective of the contract “Synthetic Infrared Scene” (W7701-082234) was to increase
the level of fidelity of infrared scenes to be used in infrared guided weapon engagement
simulations within the KARMA simulation environment. The work was carried out from
November 2008 to March 2011. This contract report focuses on the new functionalities that were
added to the infrared scene generator (IRSG) module which is part of the KARMA framework.
Complementary information about the recent modifications is also detailed in [1]. More details
about the state of the IRSG prior to this contract can be found in [2]. The report also presents
modifications to the signature modelling and analysis tool (SMAT). This tool is used to build the
signature models by populating the model databases, and generating various kind of analysis
through images generated by the IRSG module. The current version of SMAT is 3.11. The first
iteration of development, which produced the version 2.00 of SMAT prior to this contract, is
presented in details in [3] and [4].

The major modifications to the IRSG and SMAT are divided as described below. The
architectural review of the IRSG is presented in Section 2. The efforts done to improve the low-
level rendering techniques are documented in Section 3. The computation of apparent radiance
and the addition of reflections caused by the sun and the background on scene’s models are
discussed in Section 4. An atmospheric module based on MODTRAN was also integrated in the
KARMA framework in order to improve the atmospheric parameters; its mechanisms are detailed
in Section 5. The antialiasing technique developed to improve the results of the IRSG is presented
in Section 6. Important modifications were also done related to the background of generated
images to produce non-uniform textures, as presented in Section 7. New parameters were also
included in the temperature and material database of a model used in the IRSG process (Section
8). Degradation of images due to atmospheric scattering was also implemented, such as described
in Section 9. Other minor modifications which are helpful in data generation, analysis, etc. are
also presented to keep track of the changes made during this contract (Sections 10, 11, 12 and
13).

2 DRDC Valcartier CR 2011-167

2 Scene generation refactoring

Scene generation is done either through a KARMA simulation or through the SMAT modelling
tool. At the beginning of this contract, a KARMA service (KARMA::SceneGenerator3D) was used
by both “clients” and was based on other simulation services such as KARMA::Theatre,
KARMA::Environment, etc. This approach was quite straightforward for a simulation as the scene
was driven by models and parameters of a scenario. However, SMAT was required to emulate a
simulation by creating models and parameters similarly to a KARMA scenario. This task was
done in SMAT by the SMAT::AnalysisGenerator class which invokes the scene generation
module. Therefore, SMAT was tightly coupled to the simulation framework. To remove
unwanted dependencies, the architecture of the scene generation module had to be revisited.

2.1 IRSG

The scene generation functionalities have been isolated into the KARMA::IRSG class and an
application programming interface (API) has been created to allow controlling the scene and the
rendering parameters. Such an interfacing requires to create a lot of methods and data storage to
foster the usability and flexibility of the IRSG.

The IRSG still performs rendering of the infrared (IR) scene using OpenSceneGraph (OSG) for
the 3D scene management. It is almost a standalone application as it is independent from the
KARMA simulation, but the IRSG is available as a part of the KARMA::SceneGenerator3D
library. The following KARMA libraries are required: KARMA::Materials, KARMA::DataTypes,
KARMA::AdvancedTypes and KARMA::Coordinates. The IRSG would be further isolated from the
KARMA simulation framework by using its own library.

2.2 Adapting for KARMA

The scene generation service in KARMA has been easily adapted to the IRSG. Indeed, most of
the source code of the KARMA::SceneGenerator3D has been relocated into the IRSG. The
responsibility of the KARMA::SceneGenerator3D is now to adapt the IRSG for a KARMA
simulation instead of implementing scene generation, as shown in Figure 1.

DRDC Valcartier CR 2011-167 3

Figure 1: Architecture of the IRSG adapted for KARMA.

2.3 Adapting for SMAT

In SMAT, scene generation is still invoked by the SMAT::AnalysisGenerator class, but now
using the KARMA::IRSG class instead of the KARMA::SceneGenerator3D class. Similarly to the
KARMA::SceneGenerator3D, the SMAT::AnalysisGenerator adapts the IRSG for infrared
analysis in SMAT. The use of the IRSG allowed to reduce the dependencies on KARMA. Besides
the libraries required by the IRSG, the SMAT::AnalysisGenerator uses some KARMA libraries
to gather appropriate parameters for the rendering (e.g. KARMA::SmartAdapter, Scattering), as
shown in Figure 2. The method SMAT::AnalysisGenerator::SetKarmaParameters() is used to
gather these parameters and configure the IRSG accordingly.

4 DRDC Valcartier CR 2011-167

Figure 2: Architecture of the IRSG adapted for SMAT.

2.3.1 GUI uncoupling

Basically, the purpose of the SMAT::AnalysisGenerator is to operate and configure the IRSG to
perform infrared analysis. In order to increase reusability of this class and allow automated
testing, the SMAT::AnalysisGenerator has been revisited to remove any dependencies to the
graphical user interface (GUI) of SMAT. The following classes have been gathered into a library
named SmatCore:

• the SMAT::Settings class acts as a container for the SMAT application settings,
including the scene generation settings;

DRDC Valcartier CR 2011-167 5

• the SMAT::AnalysisData class acts as a container for the input parameters and the output
results of an infrared analysis; and

• the SMAT::AnalysisGenerator class acts as a manager of the scene generation settings
and performs various infrared analyses based on images generated by the IRSG: image,
intensity spectrum, polar plot, time plot and range plot.

When a SMAT analysis is created, the SMAT::AnalysisGeneratorDialog class is the GUI that
gathers the input parameters of the analysis, stores the corresponding information in a
SMAT::AnalysisData object and triggers the SMAT::AnalysisGenerator to start an infrared
analysis.

6 DRDC Valcartier CR 2011-167

3 Advanced rendering techniques

Infrared scene generation has to deal constantly with rendering issues. It is desirable that the
scene generation performance and scene realism increase in order to obtain accurate data while
the simulation length is not too much impacted. Naturally, the rendering libraries and mechanisms
used to accomplish the scene generation process have a crucial impact. The modifications done to
the IRSG module in regards to low-level rendering are described in this section.

3.1 Migrating from OSG 2.2.x to OSG 2.8.0
OSG is an open source 3D graphical toolkit that is used to manage and render 3D models in
visible and infrared modes. The toolkit is written in C++ and is based on the lower level API of
Open Graphic Library (OpenGL). In order to be compatible with Delta3D 3.2, which is used by
the KARMA 3D viewer, and to benefit of the enhancements (including several bug fixes) of the
latest version at this time, the OSG library used by the IRSG was updated to version 2.8.0.

The most notable change of this migration was the replacement of the osgUtil::SceneView
class, which has been declared deprecated, by the osgViewer::Viewer class. Table 1
summarizes the updated methods corresponding to the deprecated methods.

Table 1: Mapping between deprecated and updated methods of OSG 2.8.0.

Deprecated methods
(osgUtil::SceneView)

Updated methods

setDefault None
setClearColor osg::Camera::setClearColor

setSceneData osgViewer::setSceneData

cull osg::Viewer::renderingTraversals

setComputeNearFarMode osg::Camera::setComputeNearFarMode

getCamera osgViewer::getCamera

update osgViewer::eventTraversal
osgViewer::updateTraversal

setFrameStamp osgViewer::setFrameStamp

setViewport osg::Camera::setViewport

setViewMatrix osg::Camera::getViewMatrix

draw osgViewer::renderingTraversals

flushAllDeletedGLObjects None

Since the osgViewer::renderingTraversals() method performs both the cull and the draw
operations, the call to the IRSG::UpdateColor()method has been placed in a pre-draw callback.
This allows updating the color after the culling and before the draw.

DRDC Valcartier CR 2011-167 7

3.2 Migrating from Mesa to OpenGL

OpenGL is an API for performing 3D rendering. However, it is not a software product and it does
not have any source code. OpenGL is only a specification that describes an interface and its
expected behaviour. Therefore, to use the OpenGL API, an OpenGL implementation is required.

On Windows operating system (OS), a very basic implementation of OpenGL (1.1 or 1.4
depending of the OS version) is provided through opengl32.dll. It is important to understand
that this standard Windows library alone does not provide any hardware acceleration. In order to
get hardware acceleration and implementation of the newer OpenGL specification (1.5 to 4.1),
video drivers from graphics card manufacturer (like AMD/ATI, Intel, NVIDIA) need to be
installed. These drivers are called OpenGL Installable Client Driver (ICD). Installing a video
driver will not replace opengl32.dll: it is a system file and belongs to Windows (meaning that
only Microsoft may update it). When a video driver is installed, another file will be copied on the
system (nvoglv32.dll in the case of NVIDIA) and the registry will be modified. Then,
opengl32.dll will call into the real GL driver (nvoglv32.dll). The OpenGL runtime accesses
the registry to determine which ICD to load.

For programmers, installing video card drivers will not make gl.h or opengl32.lib available.
Those are files that come with the compiler and there are no updated gl.h and opengl32.lib
files. These are stuck at GL 1.1 and are likely to be forever. This means that it is not possible to
link directly to any function provided by newest OpenGL versions or extensions. In order to use
these newer functions, glext.h and wglext.h shall be used to get function pointer at runtime
with the wglGetProcAddress call. Fortunately, some libraries such as GLEW and GLEE were
developed to make available function pointers.

Mesa 3D is an open-source implementation of an API which is very similar to OpenGL. In fact,
the Mesa 3D implementation tries to follow the OpenGL specification (with a certain delay in
comparison to graphic card manufacturers) but does not guarantee the respect of it. Table 2
presents pros and cons of using Mesa 3D.

Table 2: Pros and cons of using Mesa 3D.

Pros Cons
- Completely platform independent since

rendering is done via software.

- The offscreen rendering API (OSMesa),

in 16/32 bits, is easy to use.

- OSMesa API is software only.

- Need to use its own OpenGL32.dll (not the
standard Windows one).

- Does not support all OpenGL specifications.

- Not up-to-date with the latest OpenGL
release.

- Small developer community.

8 DRDC Valcartier CR 2011-167

Initially, the KARMA high dynamic range rendering was implemented using the Mesa’s off-
screen rendering API (OSMesa). The OSMesa interface supports 16-bit and 32-bit color channels
rendering into user-allocated blocks of memory.

An important requirement of this project was to migrate from Mesa 3D to OpenGL ICD in order
to gain access to hardware acceleration and latest features of OpenGL. Table 3 presents the pros
and cons of using OpenGL ICD.

Table 3: Pros and cons of using OpenGL ICD.

Pros Cons
- Hardware accelerated rendering.

- Up-to-date with the OpenGL features.

- Use the standard Windows Opengl32.dll.

- Up-to-date with the GLSL features.

- Large community of users.

- Used by OSG.

- Availability of certain features (OpenGL
extension) is hardware dependant.

- Computation results may be slightly different

depending on hardware.

A good OpenGL implementation will render with hardware acceleration whenever possible.
However, the implementation is free to render without hardware acceleration. OpenGL does not
provide a mechanism to ensure that an application is using hardware acceleration, nor to query
that it is using hardware acceleration.

3.3 Framebuffer object

Usually, images have a 8-bit format for each channel (red, green and blue). Thus, each component
value can range from 0 to 255. In some situations, like in the case of radiance calculation for
infrared scene generation, this range is not sufficient i.e. does not provide enough possible values.
Framebuffer objects (FBO) allow storing images with a high-dynamic range (HDR), in 32-bit
floating point values. Without HDR, clipping will occurs, meaning that areas that are too dark
will be totally black (RGB(0,0,0)) and areas that are too bright will be totally white (RGB(1,1,1)).

Thus, the OpenGL FBO extension has been used to perform the off-screen rendering into a 32-bit
floating-point texture. By default, OpenGL uses the default framebuffer as the final rendering
destination. Everything that is put in this buffer is automatically drawn to the screen. On the other
hand, the FBO mechanism allows generating an image (2D array of pixels) in a buffer (other than
the default OpenGL framebuffer) which can be post-processed. The image is not necessarily
drawn on the screen: only if it is instructed to do so. Table 4 shows how to initialise the floating
point texture within OSG.

DRDC Valcartier CR 2011-167 9

Table 4: Definition of an off-screen floating-point texture in OSG.

int imageWidth = 500;
int imageHeight = 500;
osg::TextureRectangle* offscreenTexture = new osg::TextureRectangle;
offscreenTexture->setTextureSize(imageWidth, imageHeight);
offscreenTexture->setSourceFormat(GL_RGBA);
offscreenTexture->setSourceType(GL_FLOAT);
offscreenTexture->setInternalFormat(GL_RGBA32F_ARB);

Table 5 shows how to configure an osgViewer::Viewer to render into a floating point texture
instead of using the standard framebuffer.

Table 5: Render to texture using FBO in OSG.

// Get the main camera from the viewer
osg::Camera* camera = viewer->getCamera();

// Set the camera to render in the FBO
camera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT);

// Attach a texture to the FBO
camera->attach(osg::Camera::COLOR_BUFFER, offscreenTexture.get(), 0, 0, false,
0, 0);

3.3.1 Context conflict

Unlike in OSMesa, a FBO needs an OpenGL context to get working. A conflict between the
SMAT/IRSG OpenGL contexts appeared when a new OpenGL context was created for the FBO.
The solution retained to avoid this conflict was to memorize and make current the right context
when calling the scene generation of the IRSG from SMAT. Table 6 shows the code used to
avoid the OpenGL context conflict.

Table 6: Code to avoid conflicts between the SMAT/IRSG OpenGL contexts.

HGLRC KARMA::IRSG::m_glContext;
HDC KARMA::IRSG::m_deviceContext;

// Memorize the current OpenGL context
m_deviceContext = m_openglWindowContext->getHDC();
m_glContext = m_openglWindowContext->getWGLContext();

…

// Activate the OpenGL context of the IRSG (avoids conflicts with SMAT)
if(wglGetCurrentDC() != m_deviceContext ||
 wglGetCurrentContext() != m_glContext)
{
 wglMakeCurrent(m_deviceContext, m_glContext)
}

10 DRDC Valcartier CR 2011-167

3.4 KARMA architecture

Figure 3 and the following text show the modifications that were done to the KARMA
architecture to make possible the changes discussed previously in this section of the report.

Figure 3: Architecture of the IRSG related to the HDR hardware rendering.

• IRSG is the class which handle the scene generation based on the osgViewer::Viewer. It
implements the high dynamic range hardware rendering using an off-screen texture, a
FBO (via the osgViewer::Viewer camera settings) and a shader program. It also takes
care of the OpenGL context manipulation.

• The operator() method of the PreDrawCallback is executed after the culling operation
and before the draw operation. It has the responsibility of calling the
IRSG::UpdateColor() method.

• The operator() method of DrawCallback is executed after the draw operation. Its
responsibility is to bind the right FBO to be read by the
IRSG::ReadFrameBufferObject() method.

IRSG

m_contextId : int
m_deviceContext : HDC
m_glContext : HGLRC
m_graphicContext : osg::GraphicsContext *
m_offscreenTexture : osg::ref_ptr<osg::TextureRectangle>
m_openglWindowContext : osgViewer::GraphicsWindowWin32 *
m_preDrawCallback : osg::ref_ptr<osg::Camera::DrawCallback>
m_scene : osg::ref_ptr<osg::Group>
m_shaderProgram : osg::ref_ptr<osg::Program>
m_supersampling : int
m_viewer : osg::ref_ptr<osgViewer::Viewer>

CheckConfiguration()
CloseOpenGlContext()
ConfigureRendering()
GenerateScene()
GetImageIrradiance()
GetImageRadiance()
ReadFramebufferObject()
UpdateColor()
UpdateScene()

DrawCallback

m_multisampledFBO : bool

DrawCallback()
~DrawCallback()
<<const,virtual>> operator ()()
SetMultisampledFBO()

<<uses>>

PreDrawCallback

PreDrawCallback()
~PreDrawCallback()
<<const,virtual>> operator ()()

<<uses>>

Inherit from
osg::Camera::DrawCallback

Inherit from
osg::Camera::DrawCallback

DRDC Valcartier CR 2011-167 11

4 Apparent radiance and reflections

The addition of reflections to the IRSG module’s computations is important to bring realism to
infrared (IR) scenes. As mentioned in [5], various components (like the sun, the background,
flares and plumes) can produce reflections on other entities in a scene, which can have an impact
on an IR sensor.

During this contract, the computation of apparent radiance has been improved to vary spatially
and to include contributions from reflections of the sun and fluxes (from the sky and the ground).
Figure 4 shows how these reflections are combined to the emitted radiance of a spherical 3D
model. These contributions are calculated and modulated for each rendered pixel, based on
pixel’s normal compared with the sun position (vector oriented toward the sun); and the zenith
vector for fluxes.

Figure 4: Different reflections added on a 3D model.

Since the contributions of the apparent radiance depend on the geometry, the shader technology is
used. It was a natural choice because it is possible to access the normal (interpolated from the
surrounding vertices’ normal) of each rendered pixel of the 3D model in order to combine and
modulate these contributions at the rendering stage. Obviously, doing computations for each pixel
can add an overhead, but this process is done via the graphics processing unit (GPU) which
accelerates the overall process. Indeed, modern GPUs are very efficient to make operations in
parallel such as those described previously.

The vertex shader presented in Table 7 is used to compute the normal and position of each vertex
composing the 3D model. These values are interpolated in the fragment shader to obtain the
normal and position for each fragment located between vertices.

12 DRDC Valcartier CR 2011-167

Table 7: Vertex shader used in the IRSG.

varying vec3 normal;
varying vec3 position;

void main(void)
{
 normal = normalize(gl_NormalMatrix * gl_Normal).xyz;
 position = normalize(gl_ModelViewMatrix * gl_Vertex).xyz;
 gl_Position = ftransform();
}

The in-band apparent radiance of thermal, path and reflected components are calculated in the
IRSG while the fragment shader presented in Table 8 is used to compute the final value of pixels
of a rendered 3D model, taking into account the polygon-geometry dependant components. This
value represents the combination of the three components. These components, initially computed
such as described in [5], are now computed as described below.

The thermally emitted contribution to the apparent radiance as seen through the atmosphere is
now given by

() () () () ()cos , , dtherm N
app scaling surf bb surf path sensL L T z R= ε θ ε λ λ τ λ λ λ , (1)

where εscaling is an emissivity scaling that is detailed in Section 12 and N is the N angle factor
detailed in Section 8.3.

The apparent radiance component from the atmosphere located between the surface and the
sensor is still given by

() ()dpath
app path sensL L R= λ λ λ . (2)

The apparent radiance component from reflections on a surface is now given by

() () () ()

() () () ()

() () () () ()0

1
, d

1
1 , d

1
cos , d

i zenithrefl
app surf path sens

i zenith
surf path sens

i sun sun surf path sens

L z R

z R

E z R

+

−

θ
= ψ λ ρ λ τ λ λ λ π π

θ
+ − ψ λ ρ λ τ λ λ λ π π

+ θ λ ρ λ τ λ λ λ
π

, (3)

DRDC Valcartier CR 2011-167 13

where ()+ψ λ is the upward flux, ()−ψ λ is the downward flux and ()0
sunE λ is the sun

irradiance.

The uniform parameters at the beginning of the shader are values which come from the IRSG
while the varying parameters are the result of a previous computational stage done in the vertex
shader.

Table 8: Fragment shader used in the IRSG.

// different contributions used to calculate reflected
// radiance at target surface position
uniform float LUpRefApp;
uniform float LDownRefApp;
uniform float LSunRefApp;

// sun position in eye coordinates
uniform vec3 sunPositionEye;

// zenith unit vector in eye coordinates
uniform vec3 zenithVecEye;

// thermal radiance
uniform float LThermApp;

// path radiance
uniform float LAtmApp;

// transparency
uniform float transparency;

// factor affecting LThermAPP
uniform float nFactor;

///
// Inputs from pixel shader (interpolated)
///

varying vec3 normal;
varying vec3 position;

void main(void)
{
 ///
 // Constants
 ///

 float PI = radians(180.0);
 float PI_ON_TWO = radians(90.0);

 vec3 fragmentNormal = normalize(normal); //Important: after interpolation normal modulus != 1.
 vec3 fragmentPosition = normalize(position);

 ///
 // Thermal radiance
 ///

 float viewFactor = 0.0;
 vec3 viewVec = normalize(-position);

 // Ensure that the dot product is between the interval [-1.0, 1.0]
 float dotProduct = max(-1.0, min(1.0, dot(viewVec, fragmentNormal)));

 float viewAngle = acos(dotProduct);

 // Compute view factor when view angle is not 90 degrees from the normal (0 otherwise)
 if(viewAngle != PI_ON_TWO)
 {
 viewFactor = 1.0;

 if(nFactor != 0.0)
 {
 // Compute view factor using cosine of angle between view vector and surface’s normal
 viewFactor = pow(abs(dotProduct), nFactor);
 }
 }

 // Modulate thermal radiance using view factor
 float LThermAppContribution = viewFactor * LThermApp;

 ///
 // Sun contribution

14 DRDC Valcartier CR 2011-167

 ///

 float LSunRefAppContribution = 0.0;

 vec3 sunVec = normalize(sunPositionEye-position);

 // Ensure that the dot product is between the interval [-1.0, 1.0]
 dotProduct = max(-1.0, min(1.0, dot(sunVec, fragmentNormal)));

 float sunAngle = acos(dotProduct);

 // Solar reflection is visible only when the view vector is on the surface's side where the reflection occurs
 if(sign(cos(viewAngle)) == sign(dotProduct))
 {
 // Modulate sun contribution using cosine of angle between sun and surface normal
 LSunRefAppContribution = abs(dotProduct) * LSunRefApp;
 }

 ///
 // Upward and Downward contributions
 ///

 // Ensure that the dot product is between the interval [-1.0, 1.0]
 dotProduct = max(-1.0, min(1.0, dot(zenithVecEye,fragmentNormal)));

 float angleZenith = acos(dotProduct);

 // Contributions are inverted when the view vector is on the surface's backside
 if(viewAngle > PI_ON_TWO)
 {
 angleZenith = PI - angleZenith;
 }

 // Modulate contribution using angle between zenith and surface normal
 float LUpRefAppContribution = (angleZenith/PI) * LUpRefApp;

 // Modulate contribution based on angle between zenith and surface normal
 float LDownRefAppContribution = (1-(angleZenith/PI)) * LDownRefApp;

 ///
 // Reflected radiance
 ///

 float LRefAppContribution = LUpRefAppContribution + LDownRefAppContribution + LSunRefAppContribution;

 ///
 // Total apparent radiance = Ltherm + Lref + Latm
 ///

 // total perceived radiance
 float computedColor = LThermAppContribution + LRefAppContribution + LAtmApp;

 // set the fragment color
 gl_FragColor = vec4(computedColor, computedColor, computedColor, 1.0-transparency);
}

In order to supports double-sided surfaces, the fragment shader uses the view angle θview, defined
as the angle between the view vector and the surface’s normal, when it modulates LThermApp,
LSunRefApp, LUpRefApp and LDownRefApp components:

• Thermal radiance LTherm is the same whether the surface is seen from front (θview < 90°)
or behind (θview > 90°).

• Sun reflection LSunRefApp is not seen (component set to 0) when the surface is seen from
the opposite side where the reflection occurs.

• Upward LUpRefApp and downward LDownRefApp reflections contributions are
interchanged when the surface is seen from behind (θview > 90°).

Notice that the vertex and fragment shaders described in Table 7 and Table 8 are directly
embedded in the code, in the IRSG.cpp file (i.e. they are not defined in external files). Figure 5

DRDC Valcartier CR 2011-167 15

shows the effect of reflections on a platform: a nice gradient effect is visible. The sun is in front
of the platform with an elevation of 45.0 degrees (above horizon).

Figure 5: An example showing images obtained without (left) and with (right) reflections.

4.1 Reflections in KARMA simulations

The reflections are always taken into account (i.e. activated) in KARMA simulations. The sun
azimuth and elevation are defined in the Environment model and can be modified in its XML
parameters file, as shown in Table 9.

Table 9: KARMA’s environment parameters related to the sun.

<parameter name="SunAzimuth">
 <double>0</double>
 <documentation>
 The sun azimuth in radians measured East from
 North. This parameter is used by the visual environment (display
 the sun in a viewer) and can also be used by the simulation. The
 value range is from 0 to 2PI.
 </documentation>
</parameter>
<parameter name="SunElevation">
 <double>0.7854</double>
 <documentation>
 The sun elevation in radians. This parameter is
 used by the visual environment (display the sun in a viewer) and
 can also be used by the simulation. The value range is from -PI/2
 to +PI/2.
 </documentation>
</parameter>

16 DRDC Valcartier CR 2011-167

4.2 Reflections in SMAT

SMAT does not have access to the Environment model. However, the sun parameters can be
modified via the Analysis Settings dialog box as show in Figure 6.

Figure 6: Defining the sun parameters inside SMAT.

Figure 7 shows the parameters of an analysis, sun and fluxes, causing the reflections. They can be
activated or deactivated, based on the values selected. On the figure, the value selected (i.e.
SMART which is described in Section 5), refers to the atmospheric model used to compute the
components. It can be noted that, for backward compatibility and work using simple atmosphere
models, a geometry independent reflection such as described in [5] can be computed by selecting
Approx. in those fields.

DRDC Valcartier CR 2011-167 17

Figure 7: Parameters causing reflections in SMAT.

18 DRDC Valcartier CR 2011-167

5 Atmospheric module

To improve IR scenes computed in the IRSG, an objective of this project was to use MODTRAN
to obtain precise radiometric values depending of the current environment conditions to be
recreated in the scene. There was already an effort at DRDC-Valcartier to produce a C++ library
which is built on top of MODTRAN. This library is named SMART (not to be confused with
SMAT) for Suite for Multi-resolution Atmospheric Radiative Transmission [6][7]. An interface,
SMARTI, is also available to facilitate communications with another software. The main purpose
of SMART is the calculation of atmospheric values such as transmitted solar irradiance,
atmospheric fluxes, path and background radiances, and transmittance. This library can produce
outputs in both spectral or wideband correlated-k (CK) format.

5.1 Environment refactoring

The Environment is a model already defined in KARMA. What needed to be added is the
concept of atmospheric model. Thus, to integrate this new concept, the Environment model was
modified to increase the modularity: the Environment gathers Atmosphere objects which are
able to calculate atmospheric parameters depending on the current context (see Figure 8).

Figure 8: The relation between Environment and Atmosphere.

At this moment, the values which can be calculated by an Atmosphere are:

• transmittance;
• path radiance;
• sky (or background) radiance;
• solar irradiance;
• upward flux;
• downward flux; and
• ambient temperature.

Environment

Environment()
Environment()
<<virtual>> ~Environment()
<<virtual>> InitializeComposite()
GetTransmittance()
GetPathRadiance()
GetBackgroundRadiance()
GetSolarIrradiance()
GetUpFlux()
GetDownFlux()
GetAtmosphere()
GetAtmosphere()
GetCkTransmittance()
GetCkPathRadiance()
GetCkBackgroundRadiance()
GetCkSolarIrradiance()
GetCkUpFlux()
GetCkDownFlux()
IsWidebandModeAvailable()
GetAmbientTemperature()

(from Environment)

<<XML>>

Atmosphere

Atmosphere()
<<virtual>> ~Atmosphere()
InitializeComposite()
<<abstract>> Accept()
<<abstract>> Accept()
<<virtual>> GetTransmittance()
<<virtual>> GetPathRadiance()
<<virtual>> GetBackgroundRadiance()
<<virtual>> GetSolarIrradiance()
<<virtual>> GetUpFlux()
<<virtual>> GetDownFlux()
<<virtual>> GetCkTransmittance()
<<virtual>> GetCkPathRadiance()
<<virtual>> GetCkBackgroundRadiance()
<<virtual>> GetCkSolarIrradiance()
<<virtual>> GetCkUpFlux()
<<virtual>> GetCkDownFlux()
<<virtual>> GetAmbientTemperature()

(from Atmosphere)

<<Abstract>>

0..*0..*

DRDC Valcartier CR 2011-167 19

Environment traverses its list of atmospheric models and returns the appropriate data
corresponding to the first atmospheric model found that meet the selection criteria. For each data
mentioned previously which is required, Environment verifies, via the Accept() method, that the
atmospheric model can provide this kind of data and uses an appropriate spectral band for
processing this data. For example, the following model (Table 10) can handle six data types (with
their correlated-k version):

Table 10: An example of Accept() method for an atmospheric model.

DataTypes::Boolean KARMA::AtmosphereExample::Accept(DataTypes::DoublewavelengthMin,
 DataTypes::DoublewavelengthMax,
 int property)
{
 if (property != KARMA::Atmosphere::Transmittance_Type&&
 property != KARMA::Atmosphere::CkTransmittance_Type&&
 property != KARMA::Atmosphere::PathRadiance_Type&&
 property != KARMA::Atmosphere::CkPathRadiance_Type&&
 property != KARMA::Atmosphere::BackgroundRadiance_Type&&
 property != KARMA::Atmosphere::CkBackgroundRadiance_Type&&
 property != KARMA::Atmosphere::SolarIrradiance_Type&&
 property != KARMA::Atmosphere::CkSolarIrradiance_Type&&
 property != KARMA::Atmosphere::UpFlux_Type&&
 property != KARMA::Atmosphere::CkUpFlux_Type&&
 property != KARMA::Atmosphere::DownFlux_Type&&
 property != KARMA::Atmosphere::CkDownFlux_Type)
 return false;

 // See if the range is ok
 if (m_baseWavelengthMin <= wavelengthMin && m_baseWavelengthMax >= wavelengthMax)
 return true;
 else
 return false;
}

5.2 An atmospheric model based on SMART

To make available the SMART library into KARMA based simulations, an atmospheric model,
AtmosphereSmart, was defined and is presented in Figure 9.

20 DRDC Valcartier CR 2011-167

Figure 9: Model class diagram for the KARMA AtmosphereSmart atmospheric model.

• AtmosphereSmart is the atmospheric model developed based on SMART which can be
used in KARMA simulations to obtain values from SMART. A XML file contains the
parameters which characterize this model (see file example shown in Annex A).

• SmartAdapter is used to call methods from SMART and transform data from the IRSG
to a SMART compliant format (and vice versa). An object of this class manages the
complexity of the manipulation of objects and data (e.g. coordinate system conversion)
inside SMART. Thus, AtmosphereSmart is not aware of how SMART works. Notice that
SMAT uses this component directly (i.e. SMAT does not use the AtmosphereSmart
model) when SMART values are required.

• SMARTI is the interface to the SMART library which is based on MODTRAN. Notice that
SMART is using a precise version of MODTRAN: MODTRAN 4 version 3 release 1,
available in %KARMA_ROOT%\Softwares\Modtran.

The KARMA::Spectrum data type is used to manipulate the SMART spectral format. For the
wideband-ck mode, a wrapper was created (WidebandType) which encapsulates SMART
wideband types (NormTypeCk, RadTypeCk, NormType).

For KARMA simulations, the AtmosphereSmart model shall be defined in the composition of an
Environment model, as shown in Table 11; its parameter file will allow initializing the
atmospheric model in an appropriate way.

AtmosphereSmart
(from Atmosphere)

<<XML>> SmartAdapter
(from Atmosphere)

Environment

Environment()
Environment()
<<virtual>> ~Environment()
<<virtual>> InitializeComposite()
GetTransmittance()
GetPathRadiance()
GetBackgroundRadiance()
GetSolarIrradiance()
GetUpFlux()
GetDownFlux()
GetAtmosphere()
GetAtmosphere()
GetCkTransmittance()
GetCkPathRadiance()
GetCkBackgroundRadiance()
GetCkSolarIrradiance()
GetCkUpFlux()
GetCkDownFlux()
IsWidebandModeAvailable()
GetAmbientTemperature()

(from Environment)

<<XML>>

Atmosphere
(from Atmosphere)

<<Abstract>>

0..*0..*

SMARTI SMART MODTRAN

DRDC Valcartier CR 2011-167 21

Table 11: Adding an atmospheric module in the Environment’s composition.

<composite name="SMARTI">
 <component>AtmosphereSmart</component>
 <parameters>$(KARMA_ROOT)\ModelRepository\xml\Parameters\
 Other\AtmosphereSmart.xml
 </parameters>
 <composition>none</composition>
 <priority>0</priority>
 <documentation>

Atmospheric model based on SMART/MODTRAN allowing the calculation of
transmittance, path radiance, background radiance, solar irradiance, up
flux, down flux; in spectral and/or wideband correlated-k.

 </documentation>
</composite>

Inside SMAT, even though SmartAdapter is used directly without accessing the
AtmosphereSmart model, the atmospheric settings are still described by the parameters file of
AtmosphereSmart. Then, the parameters file of this model must be configured properly and set as
shown in Figure 10 in order to initialize SMART appropriately.

Figure 10: Setting the SMART configuration file inside SMAT.

22 DRDC Valcartier CR 2011-167

5.2.1 Initialisation review

For the wideband-ck mode, a pre-calculation phase must take place. Before beginning the
execution of a simulation, each spectrum necessary for the scene generation process are converted
into their CK equivalent. Thus, for each sensor, the following data are converted using the
sensor’s conversion space:

• the spectral response of the sensor (solar and thermal);

• spectral characteristics (reflectivity, transmissivity, emissivity) of materials (solar and
thermal);

• lookup table of blackbody radiance as a function of temperature (wideband-ck): LBB (T,
λ) Lbb_therm (T, ck). The table is constructed, using a SMART data structure, with a
minimum value of 200 K and a maximum value of 2200 K with steps of 12.5 K. SMART
returns an interpolated value if the table is interrogated with a temperature in between
two table values.

A container class, SensorCkData, is used to store the converted data and is available to the IRSG
module.

5.2.2 Calculation mode selection

Inside KARMA simulations, the calculation mode (spectral or wideband-ck) is defined for each
ImagingSensor and set inside its parameters file. If the parameter CalculationMode is set to 1,
the sensor uses the spectral mode; while the value 2 indicates that the sensor uses the wideband-
ck mode. When the wideband-ck mode is selected, the apparent radiance components are
computed in wideband format using the SMART data structure, the wideband atmospheric
quantities returned by SMART, and the previously converted properties, as presented in Section
5.2.1.

Inside SMAT, a combo box inside an analysis dialog box (Figure 11) allows the user to set if the
process shall be executed in wideband-ck or in spectral mode.

DRDC Valcartier CR 2011-167 23

Figure 11: Setting the execution mode (wideband-ck/spectral) in SMAT during an analysis.

24 DRDC Valcartier CR 2011-167

6 Antialiasing

One limit of infrared scene generation is that platforms can be located very far in front of infrared
sensors and subtend only few pixels or less than one pixel. Depending on the sampling method
used, platforms may have a poor representation, or even worst, not be represented at all on the
screen, even if the sensor is supposed to detect energy (referred as the apparent radiance). This
will lead to radiometric inaccuracies, affecting sensors based on the IRSG and therefore, the
results of the engagements.

Sampling is the process during which a continuous function is mapped on a discrete one. This
mechanism is used in computer rendering process to map analog data on a digital system. Since a
pixel is the smallest unit of a computer graphic (it is filled or not i.e. cannot be partly filled), it
will then produce jagged edges on objects where the pixel grid is visible. Sampling methods can
also produce scintillation phenomenon when an object is moving and crossing pixel boundaries,
producing a rapid variation of the color.

To reduce these phenomena, antialiasing techniques were developed. Among these, a technique
more appropriate for the purpose of infrared scene generation is called zoom antialiasing (ZAA).

6.1 Zoom antialiasing technique

Rather than supersampling over the entire screen, the zooming window technique allows
supersampling areas of the screen that are susceptible of causing aliasing artefacts. Ref. [8]
describes a procedure that renders only portions of the screen at higher resolution. More recently,
[9] describes the implementation of the ZAA procedure in the GPU, which is named CgAA. The
implementation is based on the Cg shader programming language and uses multiple rendering
passes for reducing visual artefacts caused by aliasing.

ZAA is much more efficient than full screen antialiasing (FSAA) because it focuses on areas of
the screen where aliasing is more likely to occur. However, the implementation is more
complicated since the algorithms are not embedded into the hardware (i.e. graphics card).
Nevertheless, ZAA gives more control on the antialiasing technique and more precision regarding
the calculated apparent radiance.

In brief, ZAA consists to 1) produce high definition images (i.e. textures with way more samples
than the number of pixels covered by the model) of each scene model; 2) produce accurate low
definition images (i.e. textures with a number of texels near the number of pixels covered by the
model) for each high definition image; and 3) substitute scene elements by their corresponding
low definition images. This technique is described with more details in the following sub-
sections.

6.1.1 Method description

A basic approach based on the models’ bounding sphere was developed and may eventually be
upgraded to obtain more accurate results. This technique is inspired by the approach presented in
[9]. Notice that GLSL was chosen over CG because it is natively supported by OSG.

DRDC Valcartier CR 2011-167 25

Phase 1: Produce high definition images of each scene’s element.

General approach

For each scene’s entity, i.e. 3D model, a high definition image is produced.

Technical considerations

For each 3D model in the scene, a zoom camera (osg::Camera) is created. The area covered by
the bounding sphere in the main camera’s view is calculated in term of pixels. The zoom camera
will adjust its field of view based on this value: if the value is a power of two, this value is taken;
otherwise, the field of view is increased to reach a dimension (always a square) corresponding to
a power of two. Notice that the minimum FOV is 2x2 pixels. A more accurate way would have
been to zoom on the exact area covered by the model (see Figure 12) but this technique is more
complicated to implement. The downsampling process used in the following phase is eased given
the fact that the image generated by the zoom camera is square and a power of two.

Figure 12: Zoom camera view based on bounding sphere (solid line) compared to view based on
exact model extends (dashed).

After the zoom camera is set, it renders its view into a texture. Notice that there is no background
(e.g. skybox, sun) in the zoom camera view: it is only viewing one 3D model. This also means
that a zoom camera does not see two models in its view if models are one beside the other or one
behind the other. The size of this texture depends on the user selection. The current system allows
selecting a dimension of 512x512, 256x256 or 128x128 pixels, depending on the performance
and precision desired. The mechanism that allows choosing the size is explained in Section 6.1.2.
Notice that the origin of the zoom camera(s) is the same as the main camera to respect the object
perspective (see Figure 13).

26 DRDC Valcartier CR 2011-167

Figure 13: An example showing frustra for the main scene's camera and a zoom camera.

Phase 2: Post-process high definition images.

General approach

Each high definition image (texture) is reduced to the size the image must fit in.

Technical considerations

Shaders are used during this phase to regroup texels in order to reduce images to the size
mentioned in the previous phase. Two shaders were defined for the downsampling process. The
first one allows using 4 samples of the input texture (2x factor); and the second one, by using 16
samples of the input texture (4x factor) as demonstrated in Figure 14.

Figure 14: General downsampling process (2x and 4x).

Thus, the texel value (i.e. color) in the downsampled texture is the average of 4 or 16 samples,
depending on the downsampling factor. By applying multiple combinations of these shaders, one
after another, it is possible to reduce the input texture (which is a power of two) to the size of the

DRDC Valcartier CR 2011-167 27

output texture (which is also a power of two) as shown in Figure 15. Consequently, a maximum
of 4 passes are necessary to downsample the worst case scenario: from 512 pixels to 2 pixels (512
/4 128 /4 32 /4 8 /4 2).

Figure 15: Multi-pass downsampling with shaders.

The downsampling task is realized via OSG objects with the help of shaders and cameras. An
example of the process is depicted in Figure 16. This example shows how to downsample from a
512x512 pixels texture to a size of 128x128 pixels.

Figure 16: Downsampling process via OSG.

28 DRDC Valcartier CR 2011-167

The steps introduced in the previous image are explained below.

1. A zoom camera takes a snapshot of its associated 3D model in high definition:
512x512 pixels (could also be 256x256 or 128x128 depending on the user selection).

2. This high definition texture is the input of a first downsampling pass.

3. A new camera is created and its viewport is set to the desired downsampling size i.e.
128x128 (as mentioned previously, ZAA’s shaders can reduce the input size by a
factor 2x or 4x). A quad is added as a child to this camera to receive the
downsampled texture.

4. The high definition texture is an input of the shader.

5. The shader downsamples the texture and assigns a color to each fragment of the
quad.

6. The camera takes a snapshot of the quad, producing the downsampled texture.

7. This new texture is the final one in this example, but it could have been the input of
another downsampling pass if required.

Phase 3: Replace each scene’s element by its low definition image.

General approach

For each element of the scene, create a quad, which shall replace the original 3D model, facing
the camera; and apply the low definition texture generated previously on that quad.

Technical considerations

The ZAA capacity uses osg::Billboard in order to create a quad in the scene which will hold a
texture to be displayed. Basically, billboards are quads which rotate around an axis or a point.
They are often used in 3D environments to represent a tree, rotating about its Z axis to give the
impression of a 3D object to an observer located on the ground. For the ZAA needs, quads will
rotate about their center to always face the camera. The advantage for the ZAA capacity is that it
does not need to calculate rotation to be applied on quads for each frame, since this is
automatically done via the internal processing of billboards.

To ease the process of replacing a model by its corresponding quad, the system takes advantage
of the level-of-detail (LOD) mechanism. In general, a LOD object uses a model with a higher
number of polygons when located near the camera and switches to a model containing fewer
polygons when moving away from the camera (range based). Another kind of LOD, least known,
is also available, which is more appropriate to the context of antialiasing. This second LOD bases
its “switch” mechanism (from a model to another one) on the size of the initial model bounding
sphere diameter into a camera’s view. The result is the same as the range based LOD: passed a
certain distance, the LOD will display a different geometry. However, it is easier and more

DRDC Valcartier CR 2011-167 29

intuitive to specify that when a model covers X pixels, to activate the ZAA and replace it by a
quad. Notice that the minimum quad size displayed is 2x2 pixels.

In the current implementation, three modes can be selected by the user:

1. ZAA 128 pixels;

2. ZAA 256 pixels; and

3. ZAA 512 pixels.

The mode selected specifies the dimension of the camera’s viewport but also the size at which the
LOD will replace the 3D model by a quad (threshold value as depicted in Figure 17). For
example, if the first mode is selected i.e. ZAA 128 pixels, the “high definition” image generated
by the zoom camera will be 128x128 pixels and the 3D model will be replaced by a quad when
the model’s bounding sphere dimension is less than 128 pixels.

3D model

quad

Far plane

Near plane

Model bounding sphere

dimension < threshold

Model bounding sphere

dimension >= threshold

Figure 17: Switching between the 3D model and a quad during ZAA process.

Finally, a render to texture phase will produce the final frame corresponding to the sensor’s view.
During the rendering process, each quad is rasterized, and fragments receive their color from the
downsampled texture. Since there is not a 1 on 1 correspondence for texels of the generated
texture and screen pixels (i.e. texels are the same size but do not line up exactly with the pixels of
the display), there will be a sampling error when rendering the final frame. Various sampling
methods are available with OpenGL (nearest, bi-linear, etc.). The sampling error is, of course,
affected by the method selected and the choice of a sampling method compared to another will
affect the performance of the rendering process. As a compromise between speed and precision,
the bi-linear interpolation method was selected. Notice that a blending mechanism is used to

30 DRDC Valcartier CR 2011-167

merge each quad’s texture and the background in the generated image. The global ZAA process is
resumed in Figure 18.

Sc
re

en
 1

Sc
re

en
 2

Sc
re

en
 3

Figure 18: An overview of the ZAA process.

DRDC Valcartier CR 2011-167 31

6.1.2 Zoom antialiasing activation

Inside the KARMA framework, it is possible to configure the antialiasing method for an
ImagingSensor through its XML parameters file, using the parameter AntialiasingMode
(contains a predefined value):

• 0: None;

• 1: Supersampling 2x;

• 2: Supersampling 4x;

• 3: Zoom antialiasing 128 pixels;

• 4: Zoom antialiasing 256 pixels; and

• 5: Zoom antialiasing 512 pixels.

Inside the SMAT tool, the Options dialog box shall be used to select the antialiasing mode which
will be applied during the analysis as shown in Figure 19.

Figure 19: Zoom antialiasing activation within SMAT.

6.1.3 Troubleshooting

3D models may contains range based LOD(s). To be used with ZAA, it is highly recommended to
remove any LOD(s) inside models with an appropriate model editor. Otherwise, the textures
generated could be empty (except for the background) i.e. the model is hidden because it is
located farther than the range defined by the maximal range LOD. Also, it is undesirable that the
zoom camera renders an intermediate LOD i.e. a model containing fewer polygons than the full

32 DRDC Valcartier CR 2011-167

details LOD. Eventually, LODs could be deactivated directly in the code or the range limit could
also be increased.

6.1.4 Results

In this section, some results obtained via the SMAT tool are presented to show the performance
and precision of the ZAA modes compared to other antialiasing mechanisms.

6.1.4.1 Performance

The time required to generate an image was monitored for each antialiasing methods; and when
no antialiasing method (baseline) is applied. The CC130 model was used during those tests.
Figure 20 shows the parameters used during the analysis. The distance at which the model is
located from the sensor (Distance parameter in Figure 20) is changed to obtain results at various
ranges. Rendering times are presented in Figure 21

Figure 20: Parameters used for the ZAA performance analysis.

DRDC Valcartier CR 2011-167 33

Figure 21: Time (ms) required to produce one image for the available antialiasing algorithms
and when the platform (CC130) is located at various ranges (m).

6.1.4.2 Accuracy

To analyze the accuracy of antialiasing methods, the SMAT range plot analysis was used to
generate graphs showing the contrast intensity as a function of range. The plots are generated
without atmospheric attenuation and path radiance. The parameters used during those tests are
shown in Figure 24. As a result, the variations of intensity with range represent the radiometric
errors due to aliasing effect. The values obtained with the different antialiasing modes are
presented in Figure 22. Considering that the results for the ZAA modes are not clearly visible,
Figure 23 shows the results only for these modes. Notice that a simple sphere model, which has a
radius of 1 meter, was used during those tests. It must be noted that the results are valid for the
sensor settings (resolution and FOV) presented in Figure 24.

34 DRDC Valcartier CR 2011-167

Figure 22: Contrast intensity vs. range for various antialiasing modes.

Figure 23: Contrast intensity vs. range for ZAA modes only.

DRDC Valcartier CR 2011-167 35

Figure 24: Parameters used for the ZAA accuracy analysis.

6.1.4.3 Discussion

The time required to produce an image, for the ZAA methods, increase when the platform is
located far from the camera (c.f. Figure 21). Given the current implementation, this is expected
because more downsampling passes are required as a model covers fewer pixels. At far distances,
the ZAA methods take a lot of time to execute when compared to Supersampling 4x. In the
context of infrared guided weapon engagement simulations (distance smaller than 10,000 m.), the
rendering times for the ZAA methods are comparable to the supersampling mechanism. The first
iteration of the ZAA development focused on mechanisms development to increase accuracy i.e.
no performance optimizations were done. A second iteration would allow reducing execution
times for the ZAA methods.

The contrast intensity values obtained at various ranges clearly indicates that the results obtained
under a reasonable distance (60,000 meters) are better with the ZAA modes than the
supersampling modes. Note that the 3D model covers 34.64 pixels in the sensor’s view at 1000
meters, and 0.5774 pixel at 60,000 meters.

36 DRDC Valcartier CR 2011-167

6.2 OSG rendering library

To implement the ZAA approach described in Section 6.1, new methods were required to
manipulate OSG objects as well as some debugging methods. A library was developed to gather
the new functionalities.

To ease reutilization and maximize modularity, the library is divided into three packages as
depicted in Figure 25. A first package contains high-level functionalities for the ZAA capacity
(ZoomAntialiasing). This package uses a second one containing methods allowing multi-pass
rendering (MultipassRendering). These two packages use a third one which contains basic OSG
methods to efficiently manage OSG objects (OsgUtilities).

ZoomAntialiasing MultipassRendering

OsgUtilities

Figure 25: The packages defined in the OsgRendering library.

Figure 26 presents an overview of the classes defined in the library. These classes are explained
in the following sections.

DRDC Valcartier CR 2011-167 37

Figure 26: OsgRendering class diagram.

6.2.1 Zoom antialiasing capacity

As mentioned previously, a simple technique was developed but more sophisticated algorithms
may also be deployed in the future. Thus, a system supporting multiple techniques is required.
The algorithm may also have to be changed during a simulation to adapt to the current context.
For example, it shall be possible to use an algorithm if an object subtends less than 1 pixel and
another one if more than 1 pixel. To this end, a design pattern, named Strategy pattern, is used to
ease the development by providing a mechanism to switch from one algorithm to another. The
modularity that this approach brings allows defining new algorithms without having to change the
architecture. Figure 27 shows the architecture that was defined.

PixelSizeBasedLod

m_currentSize : float
m_lastLodIndex : int
m_identifier : std::string
m_verboseSwitches : bo...

PixelSizeBasedLod()
~PixelSizeBasedLod()
<<virtual>> traverse()
GetCurrentSize()

(from OsgRendering)

Uti l ityFunctions

<<static>> AddBoundingBoxCorners()
<<static>> AddBoundingBoxVolume()
<<static>> AddBoundingSphereVolume()
<<static>> DrawFrustumFromCamera()
<<static>> UpdateZoomCameraPositionLookAtAndFov()
<<static>> CameraLookAtNode()
<<static>> AdjustCameraFovBasedOnNodeBoundingSphere()
<<static>> CalculatesBoundingSphereDimensionInScreenSpace()
<<static>> GetNextPowerOfTwo()
<<static>> GetViewDimensions()
<<static>> GetScreenDimensions()
<<static>> RotateCamera()
<<static>> FrustumWidthAtPosition()
<<static>> CreateSquare()
<<static>> AdjustFovBasedOnNextPowerOfTwoSize()
<<static>> ViewCameraInsideViewport()

(from OsgRendering)

ZoomAntial iasingManager

m_viewer : osgViewer::Viewer*
m_zaaScene : osg::Group*
m_lastUsedStrategy : int
m_disableLights : bool
m_disableTextures : bool
m_drawCallback : osg::Camera::DrawCallback*

ZoomAntial iasingManager()
~ZoomAntialiasingManager()
Update()
ChooseZoomAntialisingStrategy()

(from OsgRendering)

AbstractZoomAntialiasingStrategy

AbstractZoomAntialiasingStrategy()
<<virtual>> ~AbstractZoomAntialiasingStrategy()
<<abstract>> Update()

(from OsgRendering)

-m_currentStrategy

RttPass

m_offscreenTexture : osg::ref_ptr<osg::Texture2D>
m_image : osg::ref_ptr<osg::Image>

RttPass()
~RttPass()
GetOutputTexture()
CreateTexture()
SetupCamera()
CheckConfiguration()

(from OsgRendering)

DownsamplingPass

m_rootGroup : osg::ref_ptr<osg::Group>
m_camera : osg::ref_ptr<osg::Camera>
m_inTexture : osg::ref_ptr<osg::Texture2D>
m_outTexture : osg::ref_ptr<osg::Texture2D>
m_textureWidth : int
m_textureHeight : int
m_fragmentProgram : osg::ref_ptr<osg::Program>
m_stateSet : osg::ref_ptr<osg::StateSet>
m_image : osg::ref_ptr<osg::Image>

DownsamplingPass()
~DownsamplingPass()
GetRoot()
GetOutputTexture()
InsertFloatUniform()
AddSamplerUniform()
SetFragmentShader()
CreateTexturedQuad()
CreateOutputTexture()
SetupCamera()

(from OsgRendering)

MultipassComposer

m_rootGroup : osg::ref_ptr<osg::Group>
m_quadXForm : osg::ref_ptr<osg::PositionAttitudeTransform>
m_geode : osg::ref_ptr<osg::Geode>

MultipassComposer()
~MultipassComposer()
Update()
GetRoot()
CreateQuad()
UpdateQuadLocation()
GetQuad()

(from OsgRendering)

-m_zeroPass

-m_firstPass

-m_secondPass

-m_thirdPass

-m_fi fthPass

-m_fourthPass

ZoomEntityInfo

m_zaaLod : osg::ref_ptr<OsgRendering::PixelSizeBasedLod>
m_node : osg::ref_ptr<osg::Node>
m_zoomCamera : osg::ref_ptr<osg::Camera>
m_distanceToMainCamera : float
m_alwaysDisplayQuad : bool

ZoomEntityInfo()
~ZoomEntityInfo()
GetNode()
GetZoomCamera()
GetMultipassObject()
SetDistanceFromMainCamera()
GetDistanceFromMainCamera()
SetMultipassObject()
GetZaaLod()
SetZaaLod()
SetAlwaysDisplayQuad()
GetAlwaysDisplayQuad()

(from OsgRendering)

-m_multipassComposer

Sil lsBasedStrategy

m_viewer : osgViewer::Viewer*
m_zaaScene : osg::Group*
m_quadsAndCamerasGroup : osg::ref_ptr<osg::Group>
m_disableLights : bool
m_disableTextures : bool
m_zoomEntitiesInfo : std::vector<ZoomEnti tyInfo*>
m_drawCallback : osg::Camera::DrawCallback*

Sil lsBasedStrategy()
~SillsBasedStrategy()
Update()
SortQuadsAndZoomCamerasBasedOnDistance()

(from OsgRendering)

38 DRDC Valcartier CR 2011-167

Figure 27: Zoom antialiasing capacity as a strategy pattern.

• IRSG is the module which uses the zoom antialiasing capacity;

• ZoomAntialiasingManager controls the creation of strategies and which strategy shall be
used;

• AbstractZoomAntialiasingStrategy is a base class from which each ZAA strategy
needs to inherit from; and

• SillsBasedStrategy is the current developed strategy based on the works of [9].

6.2.2 Multi-pass rendering

A multi-pass capacity is necessary as it allows the use of multiple fragment shaders, one after the
other, to generate a single frame. For example, it is possible to use multiple shaders to
downsample a texture instead of using only one. Figure 28 depicts a generic view of what is
currently possible with the capacity: during a render stage, a texture is consecutively modified by
a series of shaders.

Figure 28: Generic multi-pass view.

SillsBasedStrategy

SillsBasedStrategy()
~SillsBasedStrategy()
Update()
SortBasedOnDistances()

(from OsgRendering)

AbstractZoomAntialiasingStrategy

AbstractZoomAntialiasingStrategy()
~AbstractZoomAntialiasingStrategy()
<<abstract>> Update()

(from OsgRendering)
IRSG

(from SceneGenerator)

ZoomAntialiasingManager

ZoomAntialiasingManager()
~ZoomAntialiasingManager()
Update()

(from OsgRendering)

DRDC Valcartier CR 2011-167 39

6.2.2.1 Pass aggregator

MultipassComposer is a class responsible to create the pipeline of passes that a texture must pass
through during rendering. A render to texture pass can be used to generate the first texture which
will be used as input of the following pass. At this moment, downsampling passes can be used in
the next passes to reduce the size of the texture.

6.2.2.1.1 Render to texture pass

The render to texture (RTT) technique, also called off-screen rendering, allows rendering a scene
into a texture i.e. a buffer is copied into a texture. The frame buffer object (FBO) extension
allows RTT in a platform-independent way. RTT is commonly used to implement a variety of
image filters and post-processing effects by capturing images that would normally be drawn to
the screen. RttPass can be used to accomplish this task.

6.2.2.1.2 Downsampling pass

The class DownsamplingPass is used to downsample an input texture by a factor 2 or 4.

6.2.3 Utilities

Some utility functions, regrouped in the class UtilityFunctions, were also developed to help
manipulating OSG objects.

It allows:

• quads manipulation to receive a texture;

• cameras manipulation, to control field of view, position/rotation. It is also possible to
create a geometry which represents the frustum of the camera (see Figure 29). This is
purely a feature to help the debugging process, to see the zoom camera’s frustum
compared to the main camera’s frustum for instance (as previously show in Figure 13);

Figure 29: Camera’s frustum representation.

40 DRDC Valcartier CR 2011-167

• bounding volumes representation which can help validating the overall zoom antialiasing
effort (see Figure 30).

Figure 30: Bounding box (left) and bounding sphere (right) representation of a 3D model.

6.2.4 Object’s size based level-of-detail

PixelSizeBasedLod is a class which inherits from osg::LOD. The process to switch from an
object to another one, when the first object reaches a certain size, is already defined in the
superclass. PixelSizeBasedLod simply:

• keeps the currently calculated size in a member variable available via an accessor;

• writes a message in the console when a switch occurs (from a 3D model to the quad; and
vice versa).

DRDC Valcartier CR 2011-167 41

7 Background

Prior to this contract, the background representation was really simplistic. A uniform background
was assumed based on a spectrum value defined in the Environment parameters file: the resulting
color, computed by the SceneGenerator3D, was associated to each pixel of the background,
without considerations of the altitude, the LOS, etc. Thus, to enhance the background
representation, various mechanisms were developed. The first step was to implement variations of
the background value according to the value returned by the atmospheric model for given sensor
altitude and LOS. The apparent background radiance is then computed as:

() ()dbkgr
app bkgr sensL L R= λ λ λ . (4)

In the following sections, the definition of a non-uniform background, created from samples taken
at multiple LOS within a frame, is presented. The blending of textures with this background to
create clutter effects is also documented.

7.1 Multiples background values

A uniform background is now defined using a single value taken in the middle of a sensor field of
view and applied to each pixel of the background. A non-uniform background is created by
obtaining multiple values from different LOS and by placing the values at the appropriate
position on the background. An interpolation between those values is done to fill the remaining
space between the calculated values. Figure 31 shows the two mechanisms that can be used.

Figure 31: Single background value (from 1 LOS) vs. multiple values (from 4 LOS).

42 DRDC Valcartier CR 2011-167

7.1.1 Background geometry

The background geometry is defined with a series of GL_QUAD_STRIP. The apparent background
radiances are associated to the vertices of this geometry, and OpenGL interpolation is performed
between the vertices.

A QUAD_STRIP is a group of connected quadrilaterals. One quadrilateral is defined for each pair of
vertices presented after the first pair. Note that the order in which vertices are used to construct a
quadrilateral from strip data is different from that used with independent data. Figure 32 shows
the difference between the GL_QUADS and GL_QUAD_STRIP.

Figure 32: GL_QUADS vs. GL_QUAD_STRIP.

Figure 33 shows how the background geometry is constructed with GL_QUADS_STRIP and the
result of the interpolation.

Figure 33: Interpolation within the QUAD_STRIP.

DRDC Valcartier CR 2011-167 43

The geometry has a color binding property that needs to be set with BIND_PER_VERTEX to be able
to use a different color (radiance value) for each vertex. The vertex and fragment shaders
presented in Table 12 and Table 13 are also required to get interpolated colors between those
vertices. When a constant background is used, the color binding is set to BIND_OVERALL. It tells
OpenGL to consider only one color per geometry instead of per vertex.

Table 12: Vertex shader for the background geometry.

varying vec4 vertexColor;

void main(void)
{
 vertexColor = gl_Color;
 gl_Position = ftransform();
}

Table 13: Fragment shader for the background geometry.

varying vec4 vertexColor;

void main(void)
{
 gl_FragColor = vertexColor;
}

In KARMA simulations, the parameters file of an ImagingSensor allows to control the
uniform/non-uniform background, via the IsUniformBackground parameter. To define a non-
uniform background, the parameters NumberOfBackgroundColumns and
NumberOfBackgroundRows shall be used.

In SMAT, the Options dialog box, shown in Figure 34, allows to control the
activation/deactivation of the non-uniform background. If the non-uniform background is
selected, the user can enter the number of rows and columns to be used to represent the
background.

44 DRDC Valcartier CR 2011-167

Figure 34: Using the non-uniform background in SMAT.

7.1.2 Using SMART to obtain background values

An important consideration with the non-uniform background is that SMART shall be used to
obtain different values for each LOS. For KARMA simulations, if the AtmosphereSmart model is
not in the Environment composition, a default behaviour will take place. This behaviour depends
on the calculation mode of the ImagingSensor model (see CalculationMode parameter).

• In spectral mode, a default background value will be returned by the Environment based
on the spectrum defined in its parameters file (see BackgroundRadianceWavelengths
and BackgroundRadianceValues parameters);

• In wideband-ck mode, a default background value will be returned by the Environment
(NULL is returned).

Inside SMAT, the parameters of an analysis allow selecting SMART to compute the background
radiance, as shown in Figure 35, in order to have a non-uniform background (if this feature is
activated in SMAT Options dialog box).

DRDC Valcartier CR 2011-167 45

Figure 35: Using SMART to calculate background radiance in SMAT.

7.2 Sky and terrain textures

The multiple point background presented above can reproduce realistic values of background
radiance within a frame. However, it may not be sufficient when sources of clutter, such as clouds
or land, need to be represented. As presented below, the previously discussed background can
then be blended with sky and land textures to further increase the scene realism.

7.2.1 Skybox

In video games, the background is often simulated by encapsulating the game level into a cube
with carefully chosen textures on each face. These textures are used to represent distant objects
such as the sky, mountains or unreachable buildings to give the impression that the background is
infinite. Moreover, it is common for the skybox to remain stationary with respect to the viewer.
This technique enforce the illusion of being very far away since other objects in the scene appear
to move, while the skybox does not. Figure 36 shows an example of skybox.

Figure 36: An example of skybox.

46 DRDC Valcartier CR 2011-167

Notice that the skybox texture shown above includes a sun. It would be preferable to not have this
artefact embedded in the texture since the sun is already modeled has an entity in the scene (more
details are presented below). Otherwise, the sun located on the skybox texture would appear with
wrong position and radiance on the images generated by the IRSG.

7.2.2 Terrain geometry

The skybox gives a good realistic effect when the sensor FOV contains sky and far away land
only. However, as the skybox remains stationary with respect to the sensor (i.e. follows the
sensor), the skybox is not suited to reproduce the relative motion of terrain seen from a sensor.
Whenever sources of moving clutter are needed, a fully textured terrain geometry representing a
real terrain can be used as shown in Figure 37. The terrain geometry does not remain stationary
with respect to sensor as the skybox does; it rather uses a fixed position in the scene.

Figure 37: An example of terrain geometry.

7.2.3 Skybox and terrain in IRSG

The fragment shader shown in Table 14 is used to scale each pixels of the original texture (for
both skybox and terrain) before being combined with background radiance pixels as detailed in
Section 7.4. The color to radiance scaling can be customized with the textureRadianceSlope
and textureColorOffset parameters. textureRadianceSlope represents the variation of
radiance associated with a variation of 1 (from pure black to pure white) in texture color, while
textureColorOffset is the texture color value (between 0 to 1) producing no variation in
background radiance. Texture values above textureColorOffset are additive, while values
below are subtractive.

Table 14: Fragment shader for the skybox and terrain.

uniform sampler2D texture;
uniform float textureRadianceSlope;
uniform float textureColorOffset;

void main (void)

DRDC Valcartier CR 2011-167 47

{
 vec4 textureColor = texture2D(texture, gl_TexCoord[0].st);
 float finalRed = textureRadianceSlope * (textureColor.r - textureColorOffset);
 gl_FragColor = vec4(finalRed, 0.0, 0.0, 1.0);
}

For KARMA simulations, the textureRadianceSlope and textureColorOffset parameters
(for the skybox and the terrain) are defined for each ImagingSensor, in their parameters file. Two
booleans allows controlling the activation of these features: UseSkyboxBackground and
UseTerrainBackground. The skybox textures and terrain already defined in Environment are
also reused.

In the case of SMAT, Figure 38 shows where the skybox and terrain parameters can be modified
in the Options dialog box. The terrain is currently hardcoded to use the following model:
$(KARMA_ROOT)\Utilities\ViewerDelta3d\3dModels\Releasable\Terrain\ArabTown.k3d.
For the skybox, the following textures are used:

• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\S.jpg;
• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\N.jpg;
• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\W.jpg;
• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\E.jpg;

• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\Up.jpg; and

• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\Down.jpg.

Figure 38: Using a skybox and terrain to model the background in SMAT.

48 DRDC Valcartier CR 2011-167

7.3 Solar disc in IRSG

The solar disc is implemented as a 3D sphere into the scene. It always appears with a 0.53 degree
diameter in the sensor’s FOV. Like the skybox, the solar disc remains stationary with respect to
the sensor. Its position relative to the sensor is set using sun azimuth and elevation defined in
Environment. Its apparent radiance is given by

() ()1
appsun sun

sun

L E R d= λ λ λ
Ω , (5)

where Ωsun is a constant equal to 6.72x10-5 (with 0.53º angular size), Esun(λ) is the sun irradiance
at sensor’s position (returned by the atmosphere model), and R(λ) is the sensor’s spectral
response. The simple fragment shader shown in Table 15 is used to set the color of the sun.

The sun disc is always activated in KARMA simulations. Figure 39 shows the activation
parameter for the sun disc inside the Options dialog box in SMAT.

Table 15: Fragment shader for the sun.

uniform float sunRadiance;

void main (void)
{
 gl_FragColor = vec4(sunRadiance, 0.0, 0.0, 1.0);
}

Figure 39: Activating the solar disc in SMAT.

DRDC Valcartier CR 2011-167 49

7.4 Rendering

In order to achieve a realistic effect, the background geometry needs to be blended with the
skybox and the terrain. However, the terrain needs to occlude the skybox without any blending
between these two geometries. To achieve this, both are rendered opaquely before being blended
(additive) with the background geometry (defined in section 7.1.1).

7.4.1 Pre-render camera

OSG offers multiple mechanisms to control rendering order of geometries. Since the background
geometry needs to be rendered over the entire FOV, it needs to be rendered using an orthogonal
projection matrix, associated with a pre-render camera (it cannot be done using a single camera).
This kind of feature is widely used in video games when rendering heads-up display (HUD) over
the game scene.

As shown in Table 16, two pre-render cameras are needed to control the rendering order before
the main camera renders the scene. The first camera renders the skybox, the sun and the terrain
(in this order) using a perspective projection matrix into the texture. The next camera renders the
background geometry over the same texture using an additive blending function. This blends the
radiance variations caused by sun, skybox, and terrain with the radiance from the atmosphere
models (associated to the background geometry).

Table 17 details the equation of the background geometry blending function. Figure 40 shows
how a non-uniform background, i.e. the multiple background values computed using SMART, is
combined with the skybox.

Table 16: Using two pre-render cameras before the main camera.

// draw the background first
m_backgroundCamera->setRenderOrder(osg::Camera::PRE_RENDER, 1);
m_environmentCamera->setRenderOrder(osg::Camera::PRE_RENDER);

// Background and environment camera both render into the FBO
m_backgroundCamera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT);
m_backgroundCamera->attach(osg::Camera::COLOR_BUFFER0,
m_offscreenTexture.get(),0,0,false,0,0);

m_environmentCamera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT);
m_environmentCamera->attach(osg::Camera::COLOR_BUFFER0,
m_offscreenTexture.get(),0,0,false,0,0);

// Add the camera to the viewer
m_viewer->addSlave(m_backgroundCamera, false);
m_viewer->addSlave(m_environmentCamera, false);

// The GL_COLOR_BUFFER_BIT MUST be cleared with opaque black
m_environmentCamera->setClearColor(osg::Vec4f(0.0f,0.0f,0.0f,1.0f));

// The GL_COLOR_BUFFER_BIT must NOT be cleared
m_backgroundCamera->setClearMask(GL_DEPTH_BUFFER_BIT);
m_viewer->getCamera()->setClearMask(GL_DEPTH_BUFFER_BIT);

50 DRDC Valcartier CR 2011-167

Table 17: Blending function when rendering the background geometry.

Destination factor = (Dr, Dg, Db, Da) = (1, 1, 1, 1) and source factor = (Sr,Sg,Sb,Sa) = (1,
1, 1, 1)
(R, G, B, A) = (RsSr + RdDr, GsSg + GdDg, BsSb + BdDb, AsSa + AdDa)
(R, G, B, A) = (Rs(1) + Rd(1), Gs(1) + Gd(1), Bs(1) + Bd(1), As(1) + Ad(1))
(R, G, B, A) = (Rs+Rd, Gs+Gd, Bs+Bd, As+Ad)

Figure 40: Processing of the final background image.

7.5 KARMA architecture

Figure 41 and the following text show the modifications that were done to the KARMA
architecture to make possible the changes discussed previously in this section of the report.

DRDC Valcartier CR 2011-167 51

Figure 41: Non-uniform background class diagram.

• The BackgroundGeode class encapsulates a background geometry used to provide a
uniform or non-uniform background in the IRSG. When the background is uniform, one
color (radiance) is assigned to the whole geometry while one color is assigned to each
vertex when the background is non-uniform.

• The Skybox class encapsulates the skybox. The skybox is parameterized using six
textures and two uniform variables.

• The TerrainGeode class encapsulates the terrain geometry. The terrain is parameterized
using a 3D model and two uniform variables.

• The SunGeode class encapsulates the solar disc geometry. No texture is required since
the geometry is uniformly colored dynamically using sun radiance at the sensor’s
location.

• The MoveEarthSkyWithEyePointTransform class contains the transformation to allow a
osg::Node to follow the eye point (sensor). This is used by the skybox and the sun to
give the impression that they are located at an “infinite” distance.

• The IRSG class handles background camera, background switch, skybox activation and
served as interface to other classes (BackgroundGeode, Skybox and SensorCkData).

• The ImagingSensor contains the background and skybox parameters to allow a
configuration for each sensor.

SensorCkData

m_solarCkBackgroundRadianceVector : std::v ector<KARMA::WidebandTy pe*>
m_thermalCkBackgroundRadianceVector : std::v ector<KARMA::WidebandTy pe*>

GetBackgroundRadiance()
SetBackgroundRadiance()

Sky box

m_geode : osg::ref _ptr<osg::Geode>
m_xForm : osg::ref _ptr<Mov eEarthy Sky WithEy ePointTransf orm>
m_textureList : osg::ref _ptr<osg::Texture2D> [6]
m_geometries : osg::ref _ptr<osg::Geometry > [6]

Sky box()
<<v irtual>> ~Sky box()
Conf igure()
SetTexture()
Conf igureShading()
MakeBox()
SetParameters()
GetParameters()

BackgroundGeode

m_numberOf Rows : unsigned int
m_numberOf Columns : unsigned int
m_backgroundGeometry : osg::ref _ptr<osg::Geometry >
m_isUnif ormBackground : bool

BackgroundGeode()
BackgroundGeode()
<<v irtual>> ~BackgroundGeode()
UpdateGeometry ()
SetUseUnif ormBackground()
IsUnif ormBackground()
SetColorArray ()
<<const>> GetNumberOf Rows()
<<const>> GetNumberOf Columns()

IRSG

m_backgroundCamera : osg::ref _ptr<osg::Camera>
m_backgroundRadianceVector : std::v ector<KARMA::Spectrum*>
m_backgroundSwitch : osg::ref _ptr<osg::Switch>
m_currentSensorId : int
m_preDrawCallback : osg::ref _ptr<osg::Camera::DrawCallback>
m_root : osg::ref _ptr<osg::Group>
m_sensorBackgroundGeodes : std::map<int,BackgroundGeode*>
m_sensorsCkData : std::map<int,KARMA::SensorCkData*>
m_shaderProgram : osg::ref _ptr<osg::Program>
m_sky box : osg::ref _ptr<Sky box>
m_sky boxSwitch : osg::ref _ptr<osg::Switch>
m_sun : osg::ref _ptr<SunGeode>
m_sunSwitch : osg::ref _ptr<osg::Switch>
m_terrain : osg::ref _ptr<TerrainGeode>
m_terrainSwitch : osg::ref _ptr<osg::Switch>
m_useSun : bool
m_useWidebandMode : bool

Activ ateSky box()
Activ ateSun()
Activ ateTerrain()
AddBackground()
AddSky Box()
AddSun()
AddTerrain()
GetBackgroundNumberOf Columns()
GetBackgroundNumberOf Rows()
GetTerrainParameters()
IsSky BoxActiv ated()
IsTerrainActiv ated()
IsUnif ormBackground()
SetBackgroundParameters()
SetBackgroundRadiance()
SetCurrentSensorId()
SetSky boxParameters()
SetTerrainParameters()
SetUseUnif ormBackground()
Conf igureBackgroundCamera()
Conf igureEnv ironmentCamera()
<<const>> IsSunActiv ated()

Inherits f rom
osg::Transf orm

Inherits f rom
osg::Geode

Inherit f rom
osg::Group

ImagingSensor

<<XML>> m_isUnif ormBackground : DataTy pes::Boolean
<<XML>> m_numberOf BackgroundColumns : DataTy pes::Dou...
<<XML>> m_numberOf BackgroundRows : DataTy pes::Double

(from Sensor)

<<XML>>
Mov eEarthy Sky WithEy ePointTransf orm

Mov eEarthy Sky WithEy ePointTransf orm()
~Mov eEarthy Sky WithEy ePointTransf orm()
<<const,v irtual>> computeLocalToWorldMatrix()
<<const,v irtual>> computeWorldToLocalMatrix()

TerrainGeode

m_node : osg::ref _ptr<osg::Node>

TerrainGeode()
<<v irtual>> ~TerrainGeode()
Conf igure()
SetModel()
Conf igureShading()
SetParameters()
GetParameters()

SunGeode

m_sphereShape : osg::ref _ptr<osg::Sphere>
m_xForm : osg::ref _ptr<Mov eEarthy Sky WithEy ePointTransf orm>

SunGeode()
<<v irtual>> ~SunGeode()
Conf igure()
SetPosition()
SetRadiance()
MakeSphere()
Conf igureShading()

52 DRDC Valcartier CR 2011-167

8 Database properties

For each model which participates in the scene generation process, a database file is associated to
the 3D model file, and contains the infrared properties. In this section, the modifications that were
made to the database are presented.

8.1 User defined spectrum

The signature of each model is characterized by materials and temperature properties, associated
to material and temperature indexes in the 3D model. These features can be edited by the way of
SMAT database editor dialog. Initially, the temperature was defined using an equation and then
used in the Planck equation to compute radiance. A new approach called user defined spectrum
has been added, allowing to define surface radiance using a combination of one or more radiance
spectrums. These spectrums are called components. When this mode is used, the thermally
emitted contribution to the apparent radiance as seen through the atmosphere is given, as opposed
to equation (1), by

() () () () ()0cos , , dtherm N
app scaling j j path sens

j

L c t L z R= ε θ φ λ τ λ λ λ , (6)

where Lj(λ) is the radiance spectrum of a component of index j and cj(t,φ) is its weighting factor
according to the entity’s time and the angle between the entity’s orientation vector and the view
vector.

Some changes in SMAT database dialog editor window were necessary to support the user
defined spectrum mode. The first change was to add a new tab to manage user defined spectrum
importation. Figure 42 shows the tab in the database editor dialog to import a set of user defined
spectrums.

DRDC Valcartier CR 2011-167 53

Figure 42: User defined spectrum import tab.

• The user defined spectrums are imported from a CSV file by using the Import button. The
file is read and stored in the database file of a given signature model. A list of spectrum is
displayed in the list on the left side of the tab.

• It is possible to view imported data in table format by using the View button.

• The Delete button can be used to clear imported spectrums.

• The Spectrum reference distance is used to specify the distance used to measure the user
defined spectrum (i.e. distance from the object).

It is necessary to take into account Spectrum reference distance in atmospheric transmittance
computation. As shown on Figure 43 two situations can occur. In the first situation (A), the sensor
is within the reference distance (nearer), thus no additional transmittance is computed since it is
already taken into account in the user defined spectrum. In the second situation (B) the sensor is
outside the reference distance (farter), thus the atmospheric transmittance will be computed using
the sensor distance minus the Spectrum reference distance (green distance).

54 DRDC Valcartier CR 2011-167

Figure 43 : Spectrum reference distance.

8.1.1 User defined spectrum file format

The user defined spectrums are stored in a comma separated values (CSV) format. This format
stores a table that is easy to see and modify using a commercial spreadsheet tool such as MS
Excel. Table 18 shows an example of the file format. The first column of this table is the
frequency values of the spectrums; all spectrums, referred as component, share the same
frequency values. The first cell of this column defines the units of the frequency values: the tag
“um” defines that the spectrum is given in wavelength while the tag “cm-1” indicates a spectrum
defined in wave number. Internally, the spectrum is stored in wavelength; therefore the input data
read in wave number is converted to wavelength. The following columns define the values for
each spectrum component. The first cell of each column defines the name of the component; this
name will be displayed in spectrum list as shown earlier in Figure 42.

Table 18: User defined spectrum file format example.

cm-1 BB(T1) BB(T2) BB(T3) CO2(T4) H2O
1900 7.76E-05 3.61E-05 2.24E-05 4.55E-05 0.000159
1902 6.75E-05 3.15E-05 1.96E-05 5.00E-05 0.000134
1904 4.53E-05 2.13E-05 1.32E-05 5.43E-05 9.03E-05
1906 2.08E-05 9.96E-06 6.28E-06 5.25E-05 4.59E-05
1908 1.46E-05 7.11E-06 4.53E-06 4.46E-05 3.26E-05

… … … … … …

8.1.2 Temperature properties

The temperature tab of the database editor dialog has been modified to add the user defined
spectrum mode settings. The Mode property has been added to allow selecting one mode or
another. The former approach based on a temperature equation is still available using the Use
Temperature mode as shown in Figure 44. The equation parameters have been grouped in a tab.

DRDC Valcartier CR 2011-167 55

The properties of the selected mode are shown in a tab section to distinguish the properties of this
mode and the user defined spectrum mode.

Figure 44: Temperature tab with use temperature mode.

Figure 45 shows the dialog in user defined spectrum mode. This mode allows the user to define a
radiance spectrum using a combination of components (e.g. CO2, H2O) defined in the Spectrum
tab. Notice that user defined spectrums must be imported as presented previously before using the
user defined spectrum mode.

56 DRDC Valcartier CR 2011-167

Figure 45: Temperature tab with user defined spectrum mode.

The user can select angle and time factors to apply on each component of the spectrum using the
Selection property. These factors can be defined with a constant or with a lookup table.

• The lookup tables are imported from a CSV file by using the Import button. The file is
read and stored in the temperature properties and a list of components is displayed in the
list in the middle of the tab.

• It is possible to view imported data in table format by using the View button.

• The Time dependence lookup table allows the user to define temporal evolution of the
factor for each component of the spectrum. The Use loop mode checkbox allows to define
periodic time lookup table.

• The Angle dependence lookup table allows the user to define angular evolution of the
factor for each component of the spectrum.

The lookup tables are stored in CSV format. Table 19 and Table 20 show an example of the file
format for time and angle factor. The first column of the Angle dependence lookup table is the
angle defined in degrees while the first column of the Time dependence lookup table is the

DRDC Valcartier CR 2011-167 57

entity’s time defined in seconds. For both lookup tables, the first cell of this column should be
empty. The following columns contain factors for each spectrum component. The lookup tables
must use spectrums, using their name, already imported in the User defined spectrum tab.

Table 19: Time dependence lookup table file format example.

BB(T1) BB(T2) BB(T3) CO2(T4) H2O
0 0.5 0.7 0.1 0.1 0.1
1 0.6 0.8 0.2 0.2 0.2
2 0.7 0.9 0.3 0.3 0.3
3 0.8 1.0 0.4 0.4 0.4
4 0.9 1.0 0.5 0.5 0.5
… … … … … …

Table 20: Angle dependence lookup table file format example.

BB(T1) BB(T2) BB(T3) CO2(T4) H2O
0 0.3 0.4 0.1 0.7 1.0

45 0.4 0.5 0.2 0.8 1.0
90 0.5 0.6 0.3 0.9 1.0

135 0.6 0.7 0.4 1.0 1.0
180 0.7 0.8 0.5 1.0 1.0
… … … … … …

8.2 Temperature lookup tables

The temperature equation used in the Planck equation is now referred as Use temperature mode.
Using this mode, the surface temperature is defined using an equation, as shown previously in
Figure 44. Additional contributions have been implemented to allow modelling the temperature
according to the entity’s conditions: its altitude, its speed and its power. The surface temperature
is given by

() () () ()2
0 1 0.2 amb

surf amb
amb

T
T T aT rM f t f power f alt f M

T

 Δ= + + + + + + +

, (7)

where f(power), f(alt) and f(M) are the power, altitude and speed lookup tables respectively.

8.3 N angle factor

The emissivity of a surface is defined spectrally in the material tab of the database editor dialog.
This tab has been modified to include a property named N angle factor, as shown in Figure 46,
which is used to reproduce emissive materials with either spatially uniform or spatially varying
radiance. This property is used in the fragment shader presented in Section 4 to modulate the
thermal radiance according to the view angle using the following factor: |cosN(θview)|, where N is
the N angle factor and θview is the angle between the view vector and the surface’s normal. The
factor is applied to the emissive component in both temperature and user defined spectrum
modes, as shown in equations (1) and (6). Figure 47 shows the resulting factor as a function of the

58 DRDC Valcartier CR 2011-167

view angle for different N angle factor. Therefore, a spatially uniform radiance is obtained when
the N angle factor is 0 as the modulation factor is always 1 no matter the view angle.

Figure 46: Material tab with the N angle factor.

Figure 47: Modulation factor computed according to the view angle and for different N angle
factors.

0

0,25

0,5

0,75

1

0 30 60 90

M
od

ul
at

io
n

Fa
ct

or

View Angle (deg.)

N = 0

N = 0.25

N = 1

N = 3

DRDC Valcartier CR 2011-167 59

9 Scattering

As a consequence of light scattering on aerosols, the atmosphere degrades images in terms of
light intensity and sharpness. For example, an object that appears as a black and white
chessboard, when seen at a certain distance, will eventually appear as a homogeneous gray square
if it is seen at a farther distance. Figure 48 [10] shows contrasts fading as mountains are farther
from the observer. This effect has been included in the IRSG by applying a filter on images. The
filter is based on the modulation transfer function (MTF), i.e. the point spread function (PSF) in
the frequency domain.

Figure 48: Image degraded by the atmosphere.

9.1 MTF database

The stratified model used to generate the scattering induced MTF has been developed by
Tremblay et al. and is explained in [11]. Figure 49 presents a reproduction of Figure 5 from [11].
It presents eight curves of the MTF as a function of the optical depth (OD) τ. This model has been
used to create a MTF database to gather the variation of MTF as a function of optical depth for
specific atmospheric conditions. A Matlab function has been used to write the MTF database
binary file. The file format is described in Table 21. The first part of the file is the header. It
contains MTF parameters than can be displayed to the user to identify the current database.

60 DRDC Valcartier CR 2011-167

Figure 49: Reproduction of Figure 5 from [11]. “Comparison of MTF simulated with the
Undique Monte Carlo simulator and the stratified model for water droplets 100 microns in
diameter and 8 different optical depths. The gray lines show the stratified model results and the
black superimposed lines show the Monte Carlo results” – the grey lines deviate from the dotted
curves (Monte Carlo simulator) at high spatial frequencies since the optical system is included in
the later.

Table 21: Description of the MTF binary format.

Type Description

double FOV

double FOI

double Particle diameter

double frequency

int Number of MTF

int Number of points in the MTF

double * Number of points Frequency values

For all MTF

double tau

double * Number of points MTF values

For a given optical depth, the MTF is applied on an image as

DRDC Valcartier CR 2011-167 61

() () (){ }{ }1, * ,U S
U S x y x y

U

P P
L TF MTF k TF L

P
−

+

 +θ θ = θ θ

. (8)

The scaling factor before the inverse Fourier transform is necessary since atmospheric
transmission is already taken into account by the IRSG. It is equivalent to

()
1

max
U S

U

P P

P MTF freq

+ =
,

(9)

where MTF(max freq) corresponds to the asymptotic MTF value of the stratified model at high
spatial frequency. This scaling factor is directly included while populating the database. Hence,
the MTFs are normalized to one at high frequency.

9.2 Using MTF for scattering

The MTF is used inside the IRSG to blur the image according to atmospheric scattering. The
image is filtered at the end of the rendering step. It is necessary to apply the MTF individually on
each object of the scene because the scattering is a function of the optical depth. For a given
object, the optical depth is estimated by

() ()

()

d
ln

d

atm sensor

sensor

T R

R

λ λ λ τ ≈ −

 λ λ

 ,

(10)

where Tatm is the atmosphere transmittance and Rsensor is the spectral response of the sensor.

To obtain one image for each object, the process uses the OsgRendering library (presented in
Section 6.2), which replaces each 3D model by a quad in the scene. The quad size is near the size
of the model’s bounding sphere. However, for the scattering effect to take place appropriately, the
3D model shall be replaced by a quad having the same size (in pixels) as the sensor which is
using the IRSG (Figure 50). Obviously, the range based LOD mechanism, as presented in
Sections 6.1.1 and 6.2.4, is deactivated i.e. the quad is always displayed whatever the distance is
between the platform and the sensor. An OSG post-draw callback is used to filter the texture
which was applied on the quad with the MTF. The main disadvantage of this approach is that it is
necessary to transfer texture data from the GPU to the CPU to perform texture filtering, which
increases the process duration.

62 DRDC Valcartier CR 2011-167

Figure 50: Different quads involved in different techniques.

The library FFTW is used to apply MTF on the resulting quad of each entity. This library is a free
open source product in the context of non-profit product (GPL licence). A commercial version is
also available and it is used in many commercial products like Matlab. The use of this library
includes only a limited number of changes in KARMA solution. The files of FFTW have been
added in the %KARMA_ROOT%\Softwares\ directory.

Figure 51 presents a flowchart of major steps to apply MTF on the quad of each entity. The
process is divided in three main operations. The first one is to get the data from the texture and
copy values in a FFTW buffer. The second step is to apply the MTF on the image. Finally, the
filtered data is taken from the FFTW buffer and put back in the texture.

Figure 51: General process to apply MTF on the texture.

DRDC Valcartier CR 2011-167 63

The ApplyMTF function is the central part of the algorithm. This function filters image with a
given MTF.

The flowchart of the ApplyMTF function is shown at Figure 52. The MTF 1D, interpolated from
the MTF database, is one of the two inputs of the function. It is necessary to transform the 1D
MTF to 2D MTF according to image dimensions. The method is illustrated on Figure 53. The
MTF computed by the model is a 1D curve. The filter buffer is filled by rotating the 1D MTF
around central point. The MTF is applied only on the FOV of the sensor. The points outside the
FOV are set to the last value of the MTF. The result of this operation is illustrated on Figure 54.
This result is put in a 2D FFTW buffer ready for filtering operation.

Figure 52: Flow chart of ApplyMTF function.

64 DRDC Valcartier CR 2011-167

Figure 53: Method to create 2D MTF.

Figure 54: Example of 2D MTF.

The following steps apply the MTF filter on an image. The first step computes the image
transform in frequency domain. This step is performed by FFTW. The second step is to apply the
filter on the image by multiplying each buffer element to element. The third step is the inverse
FFT transform computed by FFTW. The inverse transformation function of FFTW gives an
unnormalized transform. It is necessary to normalize the result by the size of the buffer (number
of rows * number of columns). Finally, the image is cropped to get a buffer that is the same size
of the initial buffer.

Table 22: Apply MTF function.

void ApplyMTF(std::vector<std::pair <double, double>> &MTF, doubleFOV, int sizeX, int
sizeY, fftw_complex **image)

{
 int sizeXInit = sizeX;
 int sizeYInit = sizeY;

DRDC Valcartier CR 2011-167 65

 if (sizeX != sizeY)
 {
 PadImage (image, sizeX, sizeY);

 if (sizeX > sizeY)
 sizeY = sizeX;
 else
 sizeX = sizeY;
 }

 // Compute MTF
 fftw_complex *MTF2D = NULL;
 Generate2DMTF(MTF, sizeX, sizeY, FOV, &MTF2D);

 // compute FFT of the image
 fftw_complex *imageFFT = NULL;
 fftw_planplan;

 imageFFT = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * sizeX * sizeY);

 plan = fftw_plan_dft_2d(sizeX, sizeY, *image, imageFFT, FFTW_FORWARD, FFTW_ESTIMATE);
 fftw_execute(plan);

 // shifting
 FFTShift(imageFFT, sizeX, sizeY);

 // multiply image by the mtf (frequency)
 for(int i = 0; i < sizeY*sizeX; ++i)
 {
 imageFFT[i][0] = imageFFT[i][0] * MTF2D[i][0];
 imageFFT[i][1] = imageFFT[i][1] * MTF2D[i][0];
 }

 FFTShift(imageFFT, sizeX, sizeY);

 // compute inverse transform
 fftw_destroy_plan(plan);
 plan=fftw_plan_dft_2d(sizeX, sizeY, imageFFT, *image, FFTW_BACKWARD, FFTW_ESTIMATE);
 fftw_execute(plan);

 FFTNormalize(*image, sizeX, sizeY);
 NormComplex (*image, sizeX, sizeY);

 //Crop image to get the original size
 CropImage(image, sizeX, sizeY, 0, 0, sizeXInit, sizeYInit);
 sizeX = sizeXInit;
 sizeY = sizeYInit;

 fftw_destroy_plan(plan);
 fftw_free (imageFFT);
}

9.3 Results

This section presents images produced by the process described in the previous section. Figure 55
presents images with and without the scattering effect on a simple sphere model. Notice that this
is not the expected result. The image should rather show a diffuse circle rather than a cross. Due
to the project ending, an investigation of the error leading to that result could not be conducted.

66 DRDC Valcartier CR 2011-167

Figure 55: Image of the sphere model without (left) and with (right) scattering effect.

In KARMA simulations, the parameter UseAtmosphereScattering of an ImagingSensor allows
to control the activation/deactivation of scattering. Notice that an atmospheric module (e.g.
AtmosphereScatteringLUT), which can manage scattering requests, shall also be defined in the
environment’s composition. Figure 56 shows the scattering activation in the Options dialog box
in SMAT. Notice that the zoom antialiasing (128, 256 or 512) must be activated in order to be
able to use this feature in KARMA simulations and in SMAT.

Figure 56: Activating the scattering in SMAT.

DRDC Valcartier CR 2011-167 67

10 SMAT controls

During the project, some new controls and enhancements were done to SMAT. The following
sections describe these new features.

10.1 Coordinate system

The view coordinate system was added at the left bottom side of the model viewer. The model
coordinate system was also integrated and is located at the center of the model. Figure 57 shows
these new additions. These coordinate systems can be shown or hidden via the View menu.

Figure 57: Model view inside SMAT.

10.2 Sun vector

The sun vector is represented by a yellow line originating from the center of the model and
pointing towards the sun (see Figure 57). This vector can also be shown or hidden via the View
menu.

10.3 Model-View manipulator

The manipulators were reviewed allowing a more intuitive and precise control over the scene.
The camera is controlled with sliders, and now it is also possible to control the model’s
orientation. Such a control is required with the addition of a terrain and skybox in the scene.
Values can also be entered in text fields, which allow inserting precise values (see Figure 58).

68 DRDC Valcartier CR 2011-167

Figure 58: Camera and model manipulators inside SMAT.

10.4 Temperature profile

A new functionality was added to SMAT which allows generating a chart where the temperature
is obtained from SMART for a range of altitudes (see Figure 59). A dialog box allows setting the
analysis parameters (the minimum and maximum altitudes and the step) used to generate the
chart.

Figure 59: Setup and view a temperature profile.

10.5 Images comparison

A new tool in SMAT allows comparing images produced by SMAT or KARMA simulations in
the CSV format. It is very useful to obtain the differences between two images to see, for
example, the impact of an algorithm on the IRSG. Figure 60 shows an example where an image
was produced without antialiasing (top left) and another one, with the ZAA 512 activated (top
right). The image created from the comparison (bottom) shows where the differences are (around
the propellers and the plumes).

DRDC Valcartier CR 2011-167 69

Figure 60: Comparing images with SMAT.

10.6 Polar plot

The polar plot analysis was reviewed to add a third execution mode. The first two modes were
already developed but are still explained. Figure 61 shows the polar plot types available.

Figure 61: Polar plot analysis with SMAT.

70 DRDC Valcartier CR 2011-167

10.6.1 Camera-Azimuth mode

The camera is placed on the horizontal plane, in front of the 3D model and looking at the center
of the model. The camera will rotate around the model on the horizontal plane, around the scene
Height axis (up axis); clockwise when viewed from the model. The view offset can be used to
give an elevation to the camera.

10.6.2 Camera-Elevation mode

The camera is placed in front of the 3D model, in the horizontal plane of the model and looking at
the center of the model. The camera will rotate counterclockwise around the X axis of the model.
The camera begins its rotation by moving down.

10.6.3 Model-Yaw mode

The model pitch and roll are set to 0.0 and the model is rotated around its own Z axis (up axis) to
face the camera. The camera is at the current position in the model viewer, and looking at the
center of the model. The model rotates counterclockwise around its own Z axis.

10.7 Radiative outputs
A tool was added to SMAT to interrogate SMART (if SMART is correctly initialized) and obtain
different spectrums that could be used into image-based analysis using the IRSG. This tool is
accessible via the Tools menu, under Radiative Output... menu item as shown in Figure 62.

Figure 62: Radiative outputs generator inside SMAT.

It allows obtaining atmospheric transmittance, path radiance, background radiance, sun
irradiance, up flux and down flux. The aspect of the 3D model (also referred as target) presented
in the model viewer is used for this analysis and the only values necessary to SMART as input are
the model altitude and the distance between the target and the sensor. Figure 63 shows an
example where a sun irradiance spectrum is generated.

DRDC Valcartier CR 2011-167 71

Figure 63: Sun irradiance spectrum obtained from SMART.

72 DRDC Valcartier CR 2011-167

11 Using OSG formats within the IRSG

The IRSG uses OpenFlight models because this format contains IRColor and IRMaterial fields
which are used by the IRSG to compute the thermal radiance of 3D models. These attributes are
native in OpenFlight models but are not in OSG files. A mechanism to convert OpenFlight
models in OSG format is then required. This is a first step to have a format which will be
modifiable by a custom editor, removing the dependency to OpenFlight format and its associated
model editors.

An important requirement is to keep the OSG files compliant with its own format and readable on
other computers, even if they do not have the appropriate (modified) reader to process the newly
included parameters. In order to respect this criterion, the UserData field of OSG files was used.

11.1 Using the OSG UserData field

Any object inheriting from osg::Object and placed in the UserData attribute of a Node will
automatically be written into the UserData field of that object inside an .osg file (c.f.
Object_writeLocalData inside the OSG plugin).

However, these data structures will not automatically be written or read inside the binary format
version of OSG. As revealed by the code (c.f. DataOutputStream::writeObject() and
DataInputStream::readObject() methods of the IVE plugin), only objects from the following
classes (or inheriting from) can be read/write from/to an .ive file from/to the UserData field
without modifying the plug-in:

• osg::Node;

• osg::StateSet;

• osg::StateAttribute;

• osg::Drawable; and

• osgSim::ShapeAttributeList.

11.2 Required modifications

The ShapeAttributeList data structure perfectly suits the needs of the IRSG. As stated before,
this structure is automatically managed for the UserData field. No modifications to the OSG and
IVE plug-ins are necessary to read or write the IRSG parameters. The ShapeAttributeList data
structure is a container of ShapeAttribute. A ShapeAttribute is an object defined by:

• a name (const char *); and

• a type value (int, double, string).

DRDC Valcartier CR 2011-167 73

So, the IRColor and IRMaterial OpenFlight fields are used as names for a ShapeAttribute and
their value (database indices) are stored as integers. However, those fields are not supported in
OSG nodes. The file GeometryRecords.cpp has been modified to read those fields and store
them as UserData. Thus, the osgdb_openflight.dll is modified to include the IRColor and
IRMaterial parameters in the OSG structure.

In flt::Face::readRecord() method, the following code is used to gather IRColor and
IRMaterial in the geometries:

// Set IRColor and IRMaterial properties (not available in OSG)

osgSim::ShapeAttributeList* attributeList = new osgSim::ShapeAttributeList();

osgSim::ShapeAttribute* irColorAttribute = new osgSim::ShapeAttribute("IRColor", IRColor);

osgSim::ShapeAttribute* irMaterialAttribute = new osgSim::ShapeAttribute("IRMaterial",
IRMaterial);

attributeList->push_back(*irColorAttribute);
attributeList->push_back(*irMaterialAttribute);

_geometry.get()->setUserData(attributeList);

11.3 Converting a model (FLT to OSG)

A simple way to convert a model from a format to another one is to create a batch file in the same
folder as the model to be converted. This batch file must invoke the osgconv.exe utility located
in %KARMA_ROOT%\Softwares\OpenSceneGraph\bin\.

In the example presented in Table 23, osgconv is converting the CC130_IR model from an
OpenFlight format to an OSG binary format. Notice that the PATH is also defined to ensure that
the correct dll (osgdb_openflight.dll), modified from the original one, is loaded.

Table 23: An example of batch file used to convert a 3D model from FLT to IVE.

@echo off

PATH=%KARMA_ROOT%\Softwares\OpenSceneGraph\dll

"%KARMA_ROOT%\Softwares\OpenSceneGraph\bin\osgconv.exe" -O “preserveObjectpreserveFace” CC130_IR.flt
CC130_IR.ive

pause

74 DRDC Valcartier CR 2011-167

12 Scaling parameters

To perform Monte Carlo based simulations, a requirement emerged stating that surface’
temperature and emissivity can vary dynamically. These values are defined in a binary file
(database) which is associated to a model. Instead of manipulating directly the binary file, the
solution developed uses two new files (two files are required for each database to be modified):
one containing the temperatures which must vary and the second, containing emissivity
parameters to change.

Thus, for each parameter that needs to vary, three parameters must be defined:

1. minimal limit;

2. maximal limit; and

3. distribution type:

a. Uniform Distribution : 0

b. Normal Distribution : 1

c. Exponential Distribution : 2

d. Laplace Distribution : 3

e. Cauchy Distribution : 4

f. Rayleigh Distribution : 5

g. Log Normal Distribution : 6

h. Levy Alpha Stable Distribution : 7

i. Gamma Distribution : 8

j. Chi-Squared Distribution : 9

k. F Distribution : 10

l. T Distribution : 11

m. Beta Distribution : 12

n. Pareto Distribution : 13

o. Poisson Distribution : 14

A KARMA internal library (%KARMA_ROOT%\Utilities\MonteCarlo) is used to obtain a random
value from these parameters which is then applied to a material’s temperature and/or emissivity.
Notice that the random values are obtained when the database is loaded i.e. when a 3D model is
added in the scene generation module.

To control the value, min and max can be set to the same value. For example, if min and max are
set to 1, the value returned by the distribution will be 1.

DRDC Valcartier CR 2011-167 75

Table 24: An example defining a scale parameter inside an XML file.

<data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\Karma\xml\schema\parameters.xsd">
<fileType>Parameters</fileType>
<parameter name="1"> <!-- database indice -->

<vector3>
<double>0.0</double> <!-- min -->
<double>1.0</double> <!-- max -->
<double>0</double> <!-- distribution -->

</vector3>
<documentation>flat gray paint</documentation>
</parameter>
</data>

At run time, the scales are loaded from XML files and stored into the database that is associated
to a 3D model. This database is used by the IRSG to compute the apparent radiance as presented
in Section 4. Note that a temperature scale is not used when a temperature is based on a user
defined spectrum (introduced in Section 8.1) while a emissivity scale is always used, no matter if
the surface’s emitted radiance is computed from a temperature or a user defined spectrum.

For KARMA simulations, scales are automatically loaded and used if they respect the following
rules:

• The names of files must be the same as the 3D model files with one of the following the
concatenated string, depending on the scale type, (emissivitiesScalings).xml or
(temperaturesScalings).xml. For example, for the model CC130_IR.flt, the name
shall be:

o CC130_IR(emissivitiesScalings).xml, or

o CC130_IR(temperaturesScalings).xml

• The files must be located in the same folder as the 3D model.

For SMAT analysis, it shall be explicitly set if scales must be used. This is done in the options
dialog box as shown in Figure 64.

76 DRDC Valcartier CR 2011-167

Figure 64: Setting the scales activation inside SMAT.

Notice that SMAT can create automatically the two scale files. When a user edits a temperature
and material database, and this database is saved on disk via the Save Database command in the
File menu, the files are generated (if they do not exist!) with default values.

DRDC Valcartier CR 2011-167 77

13 Evaluating Performance Validator tool

The IRSG consumes a lot of computer resources and its performance affect the duration of
KARMA simulations. In order to find bottlenecks, a commercial tool was used to evaluate the
time required to perform the scene generation process. Performance Validator is a commercial
tool which allows profiling code execution. Many statistics are available like the total time a
method took to execute, the number of times a method was called, etc. An important aspect of
Performance Validator is that it is not intrusive: the tool binds itself to binary files: no tags or
additional code need to be inserted in the code.

Prior using this tool, the accuracy of timing results obtained with Performance Validator was
evaluated. To accomplish this task, a simple in-house tool (name Custom Tool in the remainder of
this section) using standard timing functions inserted directly in the source code to be evaluated
was developed. This tool allows obtaining the total timing for different methods i.e. the
cumulative method duration during for the whole software lifetime.

The following sections present the results obtained with Performance Validator and Custom Tool
to calculate some code execution duration. These are just some basic tests to obtain a certain level
of confidence with the tool.

13.1 Evaluating Performance Validator overhead

There are different performance timing mechanisms available in Performance Validator. As
shown in Figure 65, Performance Counters mechanism was used to realize the timing operations.
This is the most accurate method available.

Figure 65: Performance Validator timing mechanisms.

78 DRDC Valcartier CR 2011-167

13.2 Test 1: Evaluating method without child calls

An important concern was that Performance Validator is adding a lot of code to hook/analyze a
software component. The result would then be that extra time, i.e. overhead, is added to method
duration. To analyze this phenomenon, a method with an a priori estimated time was defined. By
using the C++ Sleep(DWORD dwMilliseconds) function, which pause the normal execution flow
in terms of millisecond (specified in argument), the theoretic time to execute a portion of code is
known before its execution. Then, it is possible to observe a tool precision to profile this method.

For different reasons mentioned in the Performance Validator user guide, some methods may not
be instrumented by the profiler (the method is too short for instance). If the method to be tested
only contains a single call to Sleep(…), it will not be evaluated. To be profiled, the method shall
contain extra code (some calls to std::cout()or Sleep(0) for instance).

Table 25: Code for the evaluation of a method call.

int main(int argc, char* argv[])
{
 Run();
}

void Run()
{
 Sleep(10000);// 10,000 ms sleep
}

Table 26 presents the results obtained for the preceding code (i.e. profiling the Run() method)
with Performance Validator and the tool developed for comparison purpose.

Table 26: Evaluation of a portion of code results.

Profiling Tool
Duration

(ms)

Performance Validator 9,999.63

Custom Tool 10,001.03

Thus, Performance Validator does not add significant extra time to calculate a method which does
not include calls to other methods.

13.3 Test 2: Evaluating a method with repeated child calls

Another concern was that Performance Validator is adding a lot of code to hook/analyze a method
which calls other methods, adding an extra time to method duration.

DRDC Valcartier CR 2011-167 79

Table 27: Code for the evaluation of a method call with 10,000 child calls.

int main(int argc, char* argv[])
{
 Run();
}

void Run()
{
 for(int i = 0; i < 10000; i++)
 {
 ShortSleep();
 }
}

void ShortSleep()
{
 Sleep(1); // 1 ms sleep
}

Table 28 presents the results obtained for the previous code (profiling the Run() and the
ShortSleep() methods) with Performance Validator and the custom tool developed.

Table 28: Repeated method calls results.

Profiling Tool

Total time
(ms)

Run ShortSleep

Performance Validator 19,538.27 19,483.61

Custom Tool 19,538.99 19,522.21

Notice that 10,000 calls to a method containing a 1 ms sleep take more than 10,000 ms to execute
since there is an extra cost to call a non-inline method, independently from its content. With the
results obtained, Performance Validator gives accurate results for a method which call a repeated
(but relatively low compared to the next test) number of child methods.

13.4 Test 3: Evaluating a method with numerous child calls

Another test was elaborated to observe a method which calls another method very often. With
preliminary tests done with Performance Validator, the tool seems to overestimate some method
duration when these methods are called a high number of times.

80 DRDC Valcartier CR 2011-167

Table 29: Code for the evaluation of a method call with 1,000,000 child calls.

std::vector<int> values;

int main(int argc, char* argv[])
{
 Run();
}

void Run()
{
 for(int i = 0; i < 1000000; i++)// 1,000,000 calls
 IncreaseVector();
}

void IncreaseVector()
{
 values.push_back(1);
}

Table 30 presents the results obtained for the previous code (profiling the Run() and the
IncreaseVector() methods) with Performance Validator and the custom tool developed.

Table 30: Numerous method calls results.

Profiling Tool

Total time
(ms)

Run IncreaseVector

Performance Validator 12,175.60 9,979.53

Custom Tool 9,943.97 9,227.98

13.5 Discussion

Performance Validator has proved to be an interesting tool helping in the process of obtaining
C++ methods execution time. This software is easy to use and do not required code modifications
in classes to be profiled. The tested case consisting to obtain the execution times required for a
method with numerous child calls showed that there could be situations where the tool is not
totally accurate. However, there are no equivalent situations in the IRSG module.

DRDC Valcartier CR 2011-167 81

14 Conclusion

During the contract “Synthetic Infrared Scene” (W7701-082234), many new features were
developed to increase the fidelity of the infrared scene generator module of the KARMA
framework. The signature and modelling analysis tool (SMAT) was also modified to take
advantage of the recent development. New tools were also added to SMAT to support the
analysis.

The main improvements to the IRSG module include: the use of advanced rendering libraries and
mechanisms to exploit graphical processor units, better atmospheric modelling including the use
of a wideband-ck mode for increased performances, better representation of backgrounds, better
representation of surface reflections, implementation of a zoom antialiasing algorithm, and
representation of scattering effects.

At this moment, the zoom antialiasing algorithm is working fine but some optimizations are
necessary to decrease the time require to generate an image. In fact, the performances of the
IRSG still need to be addressed because it has a major impact on the simulations. To this end, the
tool Performance Validator could be used to detect bottlenecks and make necessary changes and
optimizations.

As presented in Section 9.3, the scattering effect is not fully functional. Indeed, the process
generates a result which looks like a cross instead of a diffuse circle. Some investigations should
allow detecting what stage of the mechanism produces this unexpected result.

82 DRDC Valcartier CR 2011-167

References.....

[1] Lepage, J., Labrie, M., Rouleau, E., Richard, J., Ross, V., Dion, D., Harrison, N., "DRDC's
approach to IR scene generation for IRCM simulation" in Technologies for Synthetic
Environments: Hardware-in-the-Loop XVI, edited by Scott B. Mobley, Proceedings of SPIE
Vol. 8015 (SPIE, Bellingham, WA 2011) 80150F.

[2] Rouleau, E. (2008). “Infrared Scene Generation (IRSG): Developer’s Guide”, DRDC-
Valcartier CR 2008-258.

[3] Richard, J. (2008). “Signature Modelling and Analysis Tool (SMAT): User’s Guide”, DRDC-
Valcartier CR 2008-260.

[4] Richard, J. (2008). “Signature Modelling and Analysis Tool (SMAT): Developer’s Guide”,
DRDC-Valcartier CR 2008-259.

[5] Lepage, J.-F., Rouleau, E., Richard, J., & Harrison, N. (2010). “Infrared scene generation for
countermeasures simulations: Implementation in the KARMA framework, phase 1”, DRDC
Valcartier TR 2010-284, in publication process, UNCLASSIFIED.

[6] Ross, V. (2010). The SMARTI library.

[7] Ross, V. and Dion, D., " SMART and SMARTI: visible and IR atmospheric radiative transfer
libraries optimized for wide-band applications," Proc. SPIE 8014, paper 26 (2011).

[8] Sills, T. G., & Williams, O. M. (2004). Aliasing and scintillation reduction in real-time
computer graphics. Optical Engineering, 43(8), 1908-1915.

[9] Sills, T. G. (June 2006). Anti-aliasing for infrared scene generation using programmable
graphics and the NVIDIA Cg toolkit. Optical Engineering, 066401-1,066401-5.

[10] Mountain. (2011). Retrieved from Wikipedia: http://en.wikipedia.org/wiki/Mountain.

[11] Tremblay, G., Roy, G., & Cao, X. (2010, December). Imaging through aerosols: a simple
model based on the Modulation Transfer Function properties. RDDC-Valcartier.

DRDC Valcartier CR 2011-167 83

Annex A AtmosphereSmart XML parameters file
example.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!--Created by KARMA XML file logger-->
<!--
Copyright Her Majesty the Queen as represented by the Minister of National Defence, 2011

Terms of release:
The information contained herein is proprietary to Her
Majesty and is provided to the recipient on the
understanding that it will be used for information and
evaluation purposes only. Any commercial use
including for manufacture is prohibited. Release to
third parties of this publication or information
contained herein is prohibited without the prior
written consent of Defence R&D Canada.
-->
<data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="..\..\..\..\..\..\xml\schema\parameters.xsd">
 <fileType>Parameters</fileType>
 <type>/AtmosphereSmart/Root/Atmosphere/AtmosphereSmart</type>
 <Object_Model_Identification_Table>
 <Name/>
 <Version/>
 <Date/>
 <Purpose/>
 <Application_Domain/>
 <Sponsor/>
 <POC/>
 <POC_Organization/>
 <POC_Telephone/>
 <POC_Email/>
 </Object_Model_Identification_Table>

 <documentation>Atmospheric model based on SMART/MODTRAN allowing the calculation of
transmittance, path radiance, background radiance, solar irradiance, up flux, down flux;
in spectral and/or wideband correlated-k.</documentation>

 <parameter name="AerosolModel">
 <double>0</double>
 <documentation>Aerosol model.

 0: MODTRAN rural aerosol model
 1: MODTRAN urban aerosol model
 2: MODTRAN maritime aerosol model
 3: MODTRAN nam aerosol model
 4: MODTRAN tropospheric aerosol model
 5: MODTRAN advective fog aerosol model
 6: MODTRAN radiative fog aerosol model
 7: MODTRAN desert aerosol model
 </documentation>
 </parameter>

 <parameter name="AirMass">
 <double>3</double>
 <documentation>Air mass parameter, ICSTL parameter in MODTRAN.</documentation>
 </parameter>

 <parameter name="AlbedoValues">
 <vector>
 <double>0.71</double>
 <double>0.56</double>

84 DRDC Valcartier CR 2011-167

 <double>0.38</double>
 <double>0.13</double>
 <double>0.2</double>
 <double>0.2</double>
 <double>0.2</double>
 <double>0.18</double>
 <double>0.15</double>
 <double>0.12</double>
 <double>0.1</double>
 <double>0.08</double>
 </vector>
 <documentation>Surface albedo (unitless).</documentation>
 </parameter>

 <parameter name="AlbedoWavelengths">
 <vector>
 <double>1.5</double>
 <double>2</double>
 <double>2.5</double>
 <double>3</double>
 <double>3.5</double>
 <double>4</double>
 <double>5</double>
 <double>6</double>
 <double>8</double>
 <double>10</double>
 <double>12</double>
 <double>14</double>
 </vector>
 <documentation>Spectral grid of albedo data (microns).</documentation>
 </parameter>

 <parameter name="AtmosphereModel">
 <double>2</double>
 <documentation>Selects one of the six geographical-seasonal model atmospheres.

 1: Tropical Atmosphere (15 deg North Latitude).
 2: Mid-Latitude Summer (45 deg North Latitude).
 3: Mid-Latitude Winter (45 deg North Latitude).
 4: Sub-Arctic Summer (60 deg North Latitude).
 5: Sub-Arctic Winter (60 deg North Latitude).
 6: 1976 US Standard Atmosphere.
 </documentation>
 </parameter>

 <parameter name="BaseWavelengthMax">
 <double>5</double>
 <documentation>Upper spectral boundary (max. is 40 micron).</documentation>
 </parameter>

 <parameter name="BaseWavelengthMin">
 <double>3</double>
 <documentation>Lower spectral boundary (min. is 0.2 micron).</documentation>
 </parameter>

 <parameter name="CloudBaseAltitude">
 <double>-1</double>
 <documentation>Cloud base altitude relative to ground level (CALT parameter in
 MODTRAN)

 greater than or equal to 0 : Cloud base altitude relative to
 ground level (m).
 less than 0 : Use default cloud base altitude.
 </documentation>
 </parameter>

 <parameter name="CloudExtinction">

DRDC Valcartier CR 2011-167 85

 <double>0</double>
 <documentation>Cloud liquid water droplet and ice particle vertical extinction (CEXT
 parameter in MODTRAN)

 greater than 0 : Cloud water particle vertical extinction (m-1).
 less than or equal to 0 : Do not scale extinction coefficients.
 </documentation>
 </parameter>

 <parameter name="CloudModel">
 <double>0</double>
 <documentation>MODTRAN cloud/rain model (0-10), ICLD parameter in MODTRAN.

 0: No clouds or rain.
 1: Cumulus cloud layer: base 0.66 km, top 3.0 km.
 2: Altostratus cloud layer: base 2.4 km, top 3.0 km.
 3: Stratus cloud layer: base 0.33 km, top 1.0 km.
 4: Stratus/stratocumulus layer: base 0.66 km, top 2.0 km.
 5: Nimbostratus cloud layer: base 0.16 km, top 0.66 km.
 6: 2.0 mm/hr ground Drizzle (modeled with cloud 3 and 0.86 mm / hr
 at 1.0 km).
 7: 5.0 mm/hr ground Light rain (modeled with cloud 5 and 2.6 mm /
 hr at 0.66 km).
 8: 12.5 mm/hr ground Moderate rain (modeled with cloud 5 and 6.0
 mm / hr at 0.66 km).
 9: 25.0 mm/hr ground Heavy rain (modeled with cloud 1 and to 0.2
 mm / hr at 3.0 km).
 10: 75.0 mm/hr ground Extreme rain (modeled with cloud 1 and 1.0
 mm / hr at 3.0 km).
 18: Standard Cirrus model (64 mm mode radius for ice particles).
 19: Sub-visual Cirrus model (4 mm mode radius for ice particles).
 </documentation>
 </parameter>

 <parameter name="CloudThickness">
 <double>0</double>
 <documentation>Cloud thickness (CTHIK parameter in MODTRAN)

 greater than 0 : Cloud vertical thickness (m).
 less than or equal to 0 : Use default cloud thickness.
 </documentation>
 </parameter>

 <parameter name="GroundTemperature">
 <double>20</double>
 <documentation>Lower surface (ground or sea) temperature (C).</documentation>
 </parameter>

 <parameter name="IrradianceMode">
 <double>1</double>
 <documentation>Irradiance mode.

 1: 1D pre-calculation mode
 2: 2D on-the-fly calculation mode
 </documentation>
 </parameter>

 <parameter name="MeasurementHeight">
 <double>5.0</double>
 <documentation>Measurement height for temperature, pressure and relative humidity (m).
 Valid from 2 to 40 m. Only affects DRDC meteo model.
 </documentation>
 </parameter>

 <parameter name="MeteoModel">
 <double>1</double>
 <documentation>Use standard MODTRAN models, or modified MODTRAN models (temperature,

86 DRDC Valcartier CR 2011-167

 pressure and water content profile of the lower atmosphere).

 1: Modtran model
 2: DRDC model
 </documentation>
 </parameter>

 <parameter name="ModelType">
 <entityType>SMART_ATMOSPHERIC_MODEL</entityType>
 <documentation>Used to save the model type.
 </documentation>
 </parameter>

 <parameter name="PressureMH">
 <double>1013</double>
 <documentation>Pressure at measurement height (mbar). Valid from 800 to 1200 mbar.
 Only affects DRDC meteo model.
 </documentation>
 </parameter>

 <parameter name="RelativeHumidityMH">
 <double>50</double>
 <documentation>Relative humidity at measurement height (%). Valid from 0 to 100 %.
 Only affects DRDC meteo model.
 </documentation>
 </parameter>

 <parameter name="Resolution">
 <double>5</double>
 <documentation>Wavenumber resolution.

 1: 1 cm-1
 5: 5 cm-1
 15: 15 cm-1
 </documentation>
 </parameter>

 <parameter name="ScatteringMode">
 <double>2</double>
 <documentation>Scattering approximation mode affects the accuracy (and speed) of the
 scattering calculations. Setting the scattering mode to single
 scattering is faster but less accurate.

 1: single scattering
 2: two flux multiple scattering (required for clouds modelisation
 and up-down flux calculation)
 </documentation>
 </parameter>

 <parameter name="TemperatureALT0">
 <double>20</double>
 <documentation>Air temperature (altitude 0) (C). Valid from -10 to 40 C. (the absolute
 difference between this parameter and TemperatureMH cannot exceed 10
 C.). Only affects DRDC meteo model.</documentation>
 </parameter>

 <parameter name="TemperatureMH">
 <double>20</double>
 <documentation>Air temperature at measurement height (C). Valid from -40 to 40 C. (the
 absolute difference between this parameter and TemperatureALT0 cannot
 exceed 10 C.). Only affects DRDC meteo model.</documentation>
 </parameter>

 <parameter name="Visibility">
 <double>0</double>
 <documentation>Koschmieder visibility (m), 0 for model default.</documentation>
 </parameter>

DRDC Valcartier CR 2011-167 87

 <parameter name="WindDirection">
 <double>0</double>
 <documentation>Current wind direction (East of North) (rad).</documentation>
 </parameter>

 <parameter name="WindSpeed">
 <double>5</double>
 <documentation>Wind speed at measurement height (m/s). Valid from 0.1 to 30 m/s.
 </documentation>
 </parameter>

 <parameter name="WindSpeedAverage24">
 <double>5</double>
 <documentation>Wind speed average in last 24 hours (m/s). Valid from 0.1 to 30 m/s.
 </documentation>
 </parameter>

 <parameter name="WindSpeedMeasurementHeight">
 <double>10</double>
 <documentation>Measurement height for wind speed (m). Valid from 2 to 40 m.
 </documentation>
 </parameter>
</data>

88 DRDC Valcartier CR 2011-167

List of symbols/abbreviations/acronyms/initialisms

2D Two Dimensions

3D Three Dimensions

API Application Program Interface

ATM Atmosphere

CG C for Graphics

CK Correlated-K

CPU Central Processing Unit

CR Contract Report

CSV Comma-Separated Values

DND Department of National Defence

DRDC Defence Research & Development Canada

FBO Framebuffer Object

FFT Fast Fourier Transform

FOI Field Of Interest

FOV Field Of View

FSAA Full Screen Antialiasing

GPL General Public License

GPU Graphics Processing Unit

HDR High Dynamic Range

HUD Heads-Up Display

ICD Installable Client Driver

ID Identifier

IR Infrared

IRSG Infrared Scene Generator

LBB Black Body Radiance

LOD Level Of Details

LOS Line Of Sight

MTF Modulation Transfer Function

OpenGL Open Graphic Library

OS Operating System

DRDC Valcartier CR 2011-167 89

OSG OpenSceneGraph

PSF Point Spread Function

R&D Research & Development

RTT Render To Texture

SMAT Signature Modelling and Analysis Tool

XML Extensible Markup Language

ZAA Zoom Antialiasing

90 DRDC Valcartier CR 2011-167

This page intentionally left blank.

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR(The name and address of the organization preparing the
document.Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Louis Tanguay Informatique inc.
825 Boul. Lebourgneuf, Bureau 204
Québec, Canada
G2J 0B9

2. SECURITY CLASSIFICATION
(Overall security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED

3. TITLE(The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)

Synthetic Infrared Scene: Improving the KARMA IRSG module and signature modelling tool
SMAT

4. AUTHORS(last name, followed by initials – ranks, titles, etc. not to be used)

Labrie, M.-A.; Rouleau E.; Richard J.; Bastien A.; Desmeules M.; Rivest-Sabourin G.

5. DATE OF PUBLICATION
(Month and year of publication of document.)

March2011

6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

106

6b. NO. OF REFS
(Total cited in document.)

11

 7. DESCRIPTIVE NOTES(The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Contract Report

8. SPONSORING ACTIVITY(The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence R&D Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

9a. PROJECT OR GRANT NO.(If appropriate, the applicable research and
development project or grant number under which the document
was written. Please specify whether project or grant.)

 Project 13ng

9b. CONTRACT NO.(If appropriate, the applicable number under
which the document was written.)

 W7701-082234/001/QCL

10a. ORIGINATOR'S DOCUMENT NUMBER(The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

LTI-SIS-2011-1

10b. OTHER DOCUMENT NO(s).(Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

DRDC Valcartier CR 2011-167

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to
theDocument Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

13. ABSTRACT(A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

The main objective of the contract “Synthetic Infrared Scene” (W7701-082234) was to increase
the level of fidelity of infrared guided weapon engagement simulations inside the KARMA
simulation environment. The work was carried out from November 2008 to March 2011. This
contract report focuses on presenting the new functionalities that were added to the infrared
scene generator (IRSG) module which is part of the KARMA framework. Modifications were
also done to the signature modelling and analysis tool (SMAT) which uses the IRSG to perform
various kind of analysis.

L'objectif principal du contrat "Scène Infrarouge Synthétique" (W7701-082234) a été
d'augmenter le niveau de fidélité d’engagements impliquant des autodirecteurs infrarouges dans
l'environnement de simulation KARMA. Le travail a été réalisé à partir de novembre 2008
jusqu’à mars 2011. Ce rapport de contrat est axé sur la présentation des nouvelles
fonctionnalités qui ont été ajoutées au module de génération de scène infrarouge (IRSG) faisant
partie de l’environnement KARMA. Des modifications ont également été apportées à l’outil de
modélisation et d'analyse de signature infrarouge (SMAT) qui utilise l’IRSG pour effectuer
différents types d'analyse.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Infrared scene generation; Infrared signature; Modelling and simulation (M&S); OpenGL;
Shaders

Canada’s Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

www.drdc-rddc.gc.ca

Defence R&D Canada R & D pour la défense Canada

